找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復制鏈接]
樓主: broach
11#
發(fā)表于 2025-3-23 10:17:27 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:44 | 只看該作者
Introduction: Where Is Nordic Noir?,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter with a few NLP applications.
13#
發(fā)表于 2025-3-23 20:29:07 | 只看該作者
Boosting (Bi-)Directed Relational Models,es, instead of just one, results in an expressive model for the conditional distributions of RDNs. We then present a sample set of results that show superior performance when compared to state-of-the-art approaches.
14#
發(fā)表于 2025-3-24 01:03:56 | 只看該作者
Boosting Undirected Relational Models,rning undirected SRL models. More precisely, we adapt the algorithm for learning the popular formalism of Markov Logic Networks. We derive the gradients in this case and present empirical evidence to demonstrate the efficacy of this approach.
15#
發(fā)表于 2025-3-24 05:52:05 | 只看該作者
Boosting in the Presence of Missing Data,umed to be false. In this chapter, we relax this assumption and derive a boosting algorithm that can effectively work with missing data. The derivation is independent of the model and hence we will discuss about adapting it for RDNs and MLNs. As with other chapters, we will conclude with empirical evaluation on the SRL data sets.
16#
發(fā)表于 2025-3-24 08:36:03 | 只看該作者
Boosting Statistical Relational Learning in Action,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter with a few NLP applications.
17#
發(fā)表于 2025-3-24 14:09:08 | 只看該作者
18#
發(fā)表于 2025-3-24 17:14:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:52:22 | 只看該作者
20#
發(fā)表于 2025-3-25 01:39:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
图们市| 上饶县| 青州市| 彰武县| 吉林省| 富裕县| 阳泉市| 罗山县| 内江市| 五河县| 图木舒克市| 车险| 灵丘县| 琼中| 清远市| 德清县| 深州市| 榆中县| 临潭县| 台山市| 榆树市| 安化县| 右玉县| 六枝特区| 东安县| 关岭| 红原县| 龙口市| 张北县| 浪卡子县| 营山县| 山西省| 内黄县| 南郑县| 宜兴市| 茂名市| 海口市| 筠连县| 黄龙县| 巫溪县| 偏关县|