找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復(fù)制鏈接]
查看: 26560|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:22:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Boosted Statistical Relational Learners
期刊簡(jiǎn)稱(chēng)From Benchmarks to D
影響因子2023Sriraam Natarajan,Kristian Kersting,Jude Shavlik
視頻videohttp://file.papertrans.cn/190/189793/189793.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類(lèi)SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014
影響因子This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics wi
Pindex Book 2014
The information of publication is updating

書(shū)目名稱(chēng)Boosted Statistical Relational Learners影響因子(影響力)




書(shū)目名稱(chēng)Boosted Statistical Relational Learners影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Boosted Statistical Relational Learners網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Boosted Statistical Relational Learners網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Boosted Statistical Relational Learners被引頻次




書(shū)目名稱(chēng)Boosted Statistical Relational Learners被引頻次學(xué)科排名




書(shū)目名稱(chēng)Boosted Statistical Relational Learners年度引用




書(shū)目名稱(chēng)Boosted Statistical Relational Learners年度引用學(xué)科排名




書(shū)目名稱(chēng)Boosted Statistical Relational Learners讀者反饋




書(shū)目名稱(chēng)Boosted Statistical Relational Learners讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:28:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:24:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:23:27 | 只看該作者
6#
發(fā)表于 2025-3-22 16:13:12 | 只看該作者
7#
發(fā)表于 2025-3-22 19:07:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:37:19 | 只看該作者
Boosted Statistical Relational Learners978-3-319-13644-8Series ISSN 2191-5768 Series E-ISSN 2191-5776
9#
發(fā)表于 2025-3-23 05:03:48 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:06 | 只看該作者
Palgrave European Film and Media Studiesrning undirected SRL models. More precisely, we adapt the algorithm for learning the popular formalism of Markov Logic Networks. We derive the gradients in this case and present empirical evidence to demonstrate the efficacy of this approach.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴县| 商南县| 澳门| 鸡东县| 台州市| 连州市| 仁寿县| 大庆市| 璧山县| 新巴尔虎右旗| 灵丘县| 永泰县| 合阳县| 农安县| 涡阳县| 壤塘县| 辽阳市| 始兴县| 伊宁市| 锡林郭勒盟| 东辽县| 德保县| 潼南县| 南华县| 斗六市| 左云县| 长岭县| 定远县| 南昌县| 安溪县| 宜春市| 天长市| 永兴县| 海南省| 麻栗坡县| 吴川市| 驻马店市| 锡林浩特市| 深圳市| 安陆市| 湖南省|