找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Engineering Science and Technology; Second International Bikesh Kumar Singh,G.R. Sinha,Rishikesh Pandey Conference proceedings 2

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 17:47:29 | 只看該作者
42#
發(fā)表于 2025-3-28 21:39:32 | 只看該作者
43#
發(fā)表于 2025-3-28 22:55:59 | 只看該作者
44#
發(fā)表于 2025-3-29 04:22:50 | 只看該作者
,Techniques des ostéotomies tibiales,theta bands extracted using wavelet decomposition. The two different modalities proposed in this work were: (1) using pre-trained network for transfer learning approach (2) pretrained network to extract the image features and classification with the help of support vector machine (SVM). In this expe
45#
發(fā)表于 2025-3-29 08:52:54 | 只看該作者
Fallimento della terapia antibiotica,tral spread was obtained and tested on different machine learning models using 10-fold, 5-fold cross validation and 33% hold out. The results obtained under normal and abnormal classification for 10-fold, 5-fold and 33% hold out showed an accuracy of 78.6%, 77.5% and 76.4% for MFCC Delta-Delta featu
46#
發(fā)表于 2025-3-29 14:03:04 | 只看該作者
,D’Alembert et la mécanique céleste,ith input representation of the signal, window size for signal segmentation, and various model parameters. It was observed that a very simple time domain representation of the raw signal, segmented by a window of 5s, when combined with a shallow 1D-CNN showed the best performance, with an accuracy s
47#
發(fā)表于 2025-3-29 18:21:00 | 只看該作者
,D’Alembert et la mécanique céleste,CV, Recursive Feature Elimination (RFE) and Hybrid selection techniques. Various machine learning classifiers, including Random-Forest (RF), Logistic Regression (LR), Decision-Tree (DT), Gaussian NB (GB), SGD Classifier (SGDC), Nearest-Neighbors (NN), Support Vector Machine (SVM), Adboost (Adb), MLP
48#
發(fā)表于 2025-3-29 20:08:27 | 只看該作者
https://doi.org/10.1007/978-2-287-72083-3res obtained from the PCA components are feed to machine learning classifier. The most commonly used classifiers are support vector machine or naive bayes, random forest to classify the epileptic brain signals. In this work, the accuracy, sensitivity obtained with PCA reduction and without PCA reduc
49#
發(fā)表于 2025-3-30 02:18:49 | 只看該作者
50#
發(fā)表于 2025-3-30 04:23:42 | 只看該作者
https://doi.org/10.1007/978-2-287-72083-3evaluating the effectiveness of proposed feature selection algorithms. The results are compared on the performance matrices and it is observed that MIGM algorithm provides the most optimal features compared two other two selection techniques. Also, the model is evaluated for temporal features and fr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 02:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北碚区| 泉州市| 舟山市| 南投县| 灯塔市| 中西区| 综艺| 茶陵县| 尚志市| 贺州市| 镇赉县| 琼结县| 宜章县| 肥乡县| 耒阳市| 巴青县| 抚顺县| 宜川县| 依安县| 广汉市| 肥乡县| 阿克陶县| 廉江市| 平舆县| 类乌齐县| 大石桥市| 青岛市| 叶城县| 正蓝旗| 仁化县| 建阳市| 万源市| 桂平市| 松潘县| 临桂县| 百色市| 常宁市| 池州市| 罗山县| 汤阴县| 德化县|