找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Biomedical Engineering Science and Technology; Second International Bikesh Kumar Singh,G.R. Sinha,Rishikesh Pandey Conference proceedings 2

[復(fù)制鏈接]
樓主: 鳥場
51#
發(fā)表于 2025-3-30 11:43:16 | 只看該作者
An Enhancement in K-means Algorithm for Automatic Ultrasound Image Segmentation,he proposed method with other state-of-the-art methods. A total of 1293 BUS images are used in this study. According to the quantitative experimental findings, the suggested method can successfully segment the BUS images with an accuracy of 91.66%. Compared to existing methods, the proposed approach
52#
發(fā)表于 2025-3-30 14:17:16 | 只看該作者
Performance Analysis of Recent Algorithms for Compression of Various Medical Images, Decomposition (SVD) is implemented respectively. Then three combination of hybrid technique i.e. lossless and lossy image compression technique Huffman?+?Singular Value Decomposition (SVD), Lempel-Ziv-Welch (LZW)?+?Discrete Cosine Transform (DCT) and Set Partitioning in Hierarchical Trees (SPHIT)?+
53#
發(fā)表于 2025-3-30 20:29:37 | 只看該作者
Smart Gaming System for Hand Rehabilitation,roposed system gives the most efficient strategy of hand tracking that uses 2D visual information in 3D to make the patient focus on rehabilitation to increase their hand movements, the patient receives treatment while manipulating a physical object that is monitored to assess how well they are doin
54#
發(fā)表于 2025-3-30 22:14:49 | 只看該作者
55#
發(fā)表于 2025-3-31 03:39:39 | 只看該作者
Deep Transfer Learning for Schizophrenia Detection Using Brain MRI,ance. Therefore, we employ the axial view of brain scans as it contains the subcortical region and ventricular areas which contribute most to the prediction of schizophrenia. Axial view images are used to train transfer learning-based VGG19 model for schizophrenia identification. This study uses a C
56#
發(fā)表于 2025-3-31 05:24:58 | 只看該作者
An Efficient Approach for Early Prediction of Sudden Cardiac Death Using Two-Stage Feature Selectio non-linear method-based features. These features along with wavelet features and statistical features were considered for the selection of significant features. In this work, a two-stage feature selection method is proposed based on mutual information (MI) and recursive feature elimination (RFE) al
57#
發(fā)表于 2025-3-31 12:07:36 | 只看該作者
58#
發(fā)表于 2025-3-31 15:18:11 | 只看該作者
59#
發(fā)表于 2025-3-31 21:09:52 | 只看該作者
60#
發(fā)表于 2025-4-1 00:37:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芒康县| 恩平市| 凤城市| 中西区| 蚌埠市| 名山县| 湘乡市| 板桥市| 武宁县| 乾安县| 新田县| 合阳县| 桃园市| 德钦县| 沧源| 观塘区| 民和| 达孜县| 虹口区| 蒙山县| 双鸭山市| 南宫市| 进贤县| 洛隆县| 康乐县| 阿拉善右旗| 灌阳县| 安阳县| 宜阳县| 三亚市| 麻阳| 泾川县| 新昌县| 南丹县| 旌德县| 永修县| 美姑县| 拉萨市| 新田县| 焦作市| 临湘市|