找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
41#
發(fā)表于 2025-3-28 15:05:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:20:17 | 只看該作者
Sarah Blissett,Vaikom S. Mahadevan the neighbourhood of a singular point it is natural to linearize the problem, so that we are then investigating the phase portrait of a linear vector field (for which, incidentally, the local study at the origin and the global study are the same thing). In this chapter we shall see that such an app
43#
發(fā)表于 2025-3-29 00:18:52 | 只看該作者
Interventions in Career Design and Educationum point? This translates into our technical language as follows. Consider a vector field . on a phase space ., and a point . at which . 0 (recall that such a point is traditionally called a .. By differentiation at . we associate to these a linear vector field ., which we naturally call the . of .
44#
發(fā)表于 2025-3-29 05:32:05 | 只看該作者
Interventions in Career Design and Educationd orbits (known also under the poetic name of .). They are studied by a method that goes back to Poincaré. This consists of choosing a point a of the closed orbit Ω, taking a small piece of hypersurface . through o and transverse to Ω, and for each . € . considering the first point . at which the or
45#
發(fā)表于 2025-3-29 10:44:51 | 只看該作者
46#
發(fā)表于 2025-3-29 13:52:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:05 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
得荣县| 铜梁县| 辉县市| 朝阳市| 曲水县| 郁南县| 宁安市| 云梦县| 井冈山市| 无棣县| 河间市| 秦安县| 漾濞| 汨罗市| 南阳市| 和田市| 宾阳县| 新河县| 张家界市| 遵义县| 高淳县| 凯里市| 东辽县| 富平县| 静乐县| 东阿县| 水富县| 墨竹工卡县| 怀远县| 晋宁县| 葵青区| 闽清县| 石渠县| 镇雄县| 永仁县| 麻江县| 陇南市| 元江| 微博| 大兴区| 淮安市|