找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
21#
發(fā)表于 2025-3-25 07:01:47 | 只看該作者
Classification of Differentiable Functions,. We follow the method suggested by the Transversality Theorem in going from ’generic’ situations to more particular ones. First of all, as the Local Inversion Theorem shows, for a generic function f at a generic point a there is nothing to say: such a function can be written as . where . is one mem
22#
發(fā)表于 2025-3-25 08:13:22 | 只看該作者
Catastrophe Theory, most common applications we are concerned with potentials depending on a finite sequence of control parameters and we study the bifurcation of their equilibrium states. For the reasons given in the Introduction, we are particularly interested in . families. Moreover, what we want to do essentially
23#
發(fā)表于 2025-3-25 15:12:22 | 只看該作者
Vector Fields,by differential equations. We start by associating to each state of the system a ’representative’ point, and the set of these points forms what in general we call the . of the system. This representation of the state of a system by a point in phase space must be rich enough so that knowing the point
24#
發(fā)表于 2025-3-25 18:29:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:11:09 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:23 | 只看該作者
27#
發(fā)表于 2025-3-26 04:46:19 | 只看該作者
Bifurcations of Phase Portraits, (as in Chapt. 5, we may talk about control parameters, hidden parameters, imperfection parameters, … ) and we wish to understand how the phase portrait changes as the parameters vary. This is the question answered by catastrophe theory when we restrict to dissipative systems governed by a potential
28#
發(fā)表于 2025-3-26 09:48:01 | 只看該作者
29#
發(fā)表于 2025-3-26 13:39:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:07:27 | 只看該作者
https://doi.org/10.1007/978-3-642-57134-3Bifurcations; Catastrophes; Dynamical Systems; Maxima; Nonlinear; Singularities; catastrophe theory; diffeo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白河县| 贵阳市| 黄大仙区| 冕宁县| 霞浦县| 韩城市| 永寿县| 新沂市| 西青区| 永年县| 镇远县| 启东市| 保德县| 武乡县| 深圳市| 文登市| 深泽县| 驻马店市| 和硕县| 夏津县| 友谊县| 双牌县| 西城区| 安国市| 本溪市| 石门县| 柏乡县| 新蔡县| 九龙坡区| 阳新县| 沾益县| 宁波市| 郑州市| 林甸县| 濮阳市| 波密县| 贡嘎县| 什邡市| 古蔺县| 河津市| 洛阳市|