找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory; André Weil Book 19671st edition Springer-Verlag Berlin Heidelberg 1967 Cantor.Mathematica.field.number theory

[復(fù)制鏈接]
樓主: Animosity
31#
發(fā)表于 2025-3-26 22:44:21 | 只看該作者
0072-7830 Overview: 978-3-662-00046-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
32#
發(fā)表于 2025-3-27 02:19:02 | 只看該作者
33#
發(fā)表于 2025-3-27 08:27:11 | 只看該作者
Takeshi Sairenji,Takeshi Kuratae .. for the maximal compact subring of .. and .. for the maximal ideal of .., these being the subsets of .. respectively defined by |.|.?1 and by |.|. < 1. We write . for the set of the infinite places of ., and . for any finite set of places of ., containing ..
34#
發(fā)表于 2025-3-27 12:13:51 | 只看該作者
Ysolina Centifanto-Fitzgerald Ph.D. finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
35#
發(fā)表于 2025-3-27 17:12:53 | 只看該作者
36#
發(fā)表于 2025-3-27 18:21:16 | 只看該作者
Adelese .. for the maximal compact subring of .. and .. for the maximal ideal of .., these being the subsets of .. respectively defined by |.|.?1 and by |.|. < 1. We write . for the set of the infinite places of ., and . for any finite set of places of ., containing ..
37#
發(fā)表于 2025-3-28 00:59:37 | 只看該作者
Traces and norms finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
38#
發(fā)表于 2025-3-28 02:32:18 | 只看該作者
Sonja J. Olsen,Patrick S. MooreLet E be a vector-space of finite dimension over .. By a .-lattice in E, we understand a finitely generated subgroup of E which contains a basis of E over ..
39#
發(fā)表于 2025-3-28 07:13:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:20:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌都县| 丘北县| 长沙市| 同江市| 灌南县| 丽江市| 满洲里市| 岳西县| 咸阳市| 千阳县| 咸宁市| 舟曲县| 稻城县| 庐江县| 招远市| 晴隆县| 牙克石市| 宿州市| 大石桥市| 揭西县| 通道| 乌苏市| 中超| 丰原市| 霍州市| 太谷县| 黑山县| 安义县| 烟台市| 临汾市| 门源| 霍城县| 陆河县| 宾川县| 历史| 旅游| 梁山县| 菏泽市| 观塘区| 安岳县| 措勤县|