找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory; André Weil Book 19671st edition Springer-Verlag Berlin Heidelberg 1967 Cantor.Mathematica.field.number theory

[復(fù)制鏈接]
樓主: Animosity
11#
發(fā)表于 2025-3-23 12:01:00 | 只看該作者
12#
發(fā)表于 2025-3-23 17:00:03 | 只看該作者
https://doi.org/10.1007/978-3-642-80499-1for those of .. and of .., respectively, over ... We write .. for the restriction morphism of ?. into ?, and also, as explained in Chap.XII–1, for that of ?. into ?. We write .. for the group of characters of ?, or, what amounts to the same, of ?; for each . ∈ ., we write .. = .; this is a character of ?., or, what amounts to the same, of ?..
13#
發(fā)表于 2025-3-23 21:39:41 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:48 | 只看該作者
15#
發(fā)表于 2025-3-24 03:27:05 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:51:48 | 只看該作者
Tamar Ben-Porat,Albert S. Kaplanmorphic to the prime field .. = ./., with which we may identify it. Then . may be regarded as a vector-space over ..; as such, it has an obviously finite dimension ., and the number of its elements is ... If . is a subfield of a field . with .. elements, . may also be regarded e.g. as a left vector-
18#
發(fā)表于 2025-3-24 15:07:14 | 只看該作者
Porcine Cytomegalovirus (PCMV),an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I-2. By th. 3 of Chap. I–2, every subspace of such a space . is closed in .. Taking coordin
19#
發(fā)表于 2025-3-24 21:02:05 | 只看該作者
Herpesviral Diseases of the Horse,lgebraic number-fields by means of their embeddings into local fields. In the last century, however, it was discovered that the methods by which this can be done may be applied with very little change to certain fields of charac-teristic .>1; and the simultaneous study of these two types of fields t
20#
發(fā)表于 2025-3-25 01:18:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 芜湖县| 邮箱| 无锡市| 临桂县| 西平县| 噶尔县| 桦南县| 高台县| 广水市| 瑞金市| 曲麻莱县| 石渠县| 方城县| 杭州市| 石林| 蓬莱市| 太白县| 交城县| 寿宁县| 兴仁县| 舒城县| 株洲县| 合阳县| 盖州市| 县级市| 浦城县| 伊川县| 城口县| 涞源县| 喀喇沁旗| 六枝特区| 高尔夫| 沙田区| 吉木萨尔县| 六盘水市| 太康县| 鹤山市| 永川市| 镶黄旗| 张家界市|