找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – CRYPTO 2024; 44th Annual Internat Leonid Reyzin,Douglas Stebila Conference proceedings 2024 International Associat

[復(fù)制鏈接]
樓主: 搭話
31#
發(fā)表于 2025-3-26 22:41:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:45:53 | 只看該作者
How to?Prove Statements Obliviously?sults..Prior to this work, there were . for . of these applications. We also investigate the use of this approach in the context of public proof aggregation. These are only a few representative applications that we explore in this paper. We expect our techniques to be widely applicable in many other scenarios.
33#
發(fā)表于 2025-3-27 07:54:22 | 只看該作者
34#
發(fā)表于 2025-3-27 10:45:08 | 只看該作者
Adaptively Sound Zero-Knowledge SNARKs for UPgnated verifier model. . is an expressive subclass of . consisting of all . languages where each instance has at most one witness; a designated verifier SNARG (dvSNARG) is one where verification of the SNARG proof requires a private verification key; and such a dvSNARG is reusable if soundness holds
35#
發(fā)表于 2025-3-27 15:26:16 | 只看該作者
36#
發(fā)表于 2025-3-27 21:39:27 | 只看該作者
Zero-Knowledge IOPs Approaching Witness Length few bits from the prover messages. IOPs generalize standard Probabilistically-Checkable Proofs (PCPs) to the interactive setting, and in the few years since their introduction have already exhibited major improvements in main parameters of interest (such as the proof length and prover and verifier
37#
發(fā)表于 2025-3-27 21:59:21 | 只看該作者
BaseFold: Efficient Field-Agnostic Polynomial Commitment Schemes from?Foldable Codesant application of a multilinear PCS is constructing Succinct Non-interactive Arguments (SNARKs) from multilinear polynomial interactive oracle proofs (PIOPs). Furthermore, field-agnosticism is a major boon to SNARK efficiency in applications that require (or benefit from) a certain field choice..Ou
38#
發(fā)表于 2025-3-28 03:40:36 | 只看該作者
39#
發(fā)表于 2025-3-28 08:54:51 | 只看該作者
40#
發(fā)表于 2025-3-28 13:28:28 | 只看該作者
Greyhound: Fast Polynomial Commitments from?Latticesction lies a simple three-round protocol for proving evaluations for polynomials of bounded degree . with verifier time complexity .. By composing it with the LaBRADOR proof system (CRYPTO 2023), we obtain a succinct proof of polynomial evaluation (i.e. polylogarithmic in .) that admits a sublinear
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 渝北区| 聂荣县| 齐河县| 小金县| 扬州市| 张家界市| 琼海市| 柞水县| 疏附县| 巴彦县| 深州市| 乌兰县| 永胜县| 封开县| 黑河市| 策勒县| 永善县| 太湖县| 大港区| 广河县| 林口县| 石景山区| 乌苏市| 信阳市| 江北区| 黄大仙区| 太和县| 奉节县| 诸暨市| 松滋市| 南宁市| 温泉县| 那曲县| 江达县| 巴里| 上饶县| 蓝山县| 泸西县| 堆龙德庆县| 集贤县|