找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Cryptology – CRYPTO 2024; 44th Annual Internat Leonid Reyzin,Douglas Stebila Conference proceedings 2024 International Associat

[復(fù)制鏈接]
樓主: 搭話
21#
發(fā)表于 2025-3-25 04:38:35 | 只看該作者
Adaptive Security in?SNARGs via?iO and?Lossy Functionsdomizable one way functions (in addition?to obfuscation). Such functions are only currently known to be realizable?from assumptions such as discrete log or factoring that are known to not?hold in a quantum setting.
22#
發(fā)表于 2025-3-25 08:35:07 | 只看該作者
Conference proceedings 2024VI: Cryptanalysis; new primitives; side-channels and leakage;..Part VII: Quantum cryptography; threshold cryptography;..Part VIII: Multiparty computation;..Part IX: Multiparty computation; private information retrieval; zero-knowledge;..Part X: Succinct arguments...?.
23#
發(fā)表于 2025-3-25 13:53:27 | 只看該作者
0302-9743 4. The conference took place at Santa Barbara, CA, USA, during August 18-22, 2024...The 143 full papers presented in the proceedings were carefully reviewed and selected from a total of 526 submissions. The papers are organized in the following topical sections:..Part I: Digital signatures;..Part II
24#
發(fā)表于 2025-3-25 19:53:34 | 只看該作者
25#
發(fā)表于 2025-3-25 23:04:06 | 只看該作者
M. Heberer,A. Bodoky,M. Dürig,F. Harder through an exhaustive parameter search. Polymath’s prover does not output . elements, aiding in batch verification, SNARK aggregation, and recursion. Polymath’s properties make it highly suitable to be the final SNARK in SNARK compositions.
26#
發(fā)表于 2025-3-26 01:04:04 | 只看該作者
Friedrich Wilhelm Ahnefeld,A. Grünertals of degree at most ., the scheme produces evaluation proofs of size 53KB, which is more than . times smaller than the recent lattice-based framework, called . (EUROCRYPT 2024), and around three orders of magnitude smaller than Ligero (CCS 2017) and Brakedown (CRYPTO 2023).
27#
發(fā)表于 2025-3-26 06:43:45 | 只看該作者
Rechnerarchitekturen und Betriebssysteme,IR achieves an improvement in argument size that ranges from . to . depending on the chosen parameters, with similar prover and verifier running times. For example, in order to achieve 128 bits of security for degree . and rate 1/4, STIR has argument size 114?KiB, compared to 211?KiB for FRI.
28#
發(fā)表于 2025-3-26 11:07:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:12:58 | 只看該作者
Polymath: Groth16 Is Not the?Limit through an exhaustive parameter search. Polymath’s prover does not output . elements, aiding in batch verification, SNARK aggregation, and recursion. Polymath’s properties make it highly suitable to be the final SNARK in SNARK compositions.
30#
發(fā)表于 2025-3-26 17:55:48 | 只看該作者
Greyhound: Fast Polynomial Commitments from?Latticesals of degree at most ., the scheme produces evaluation proofs of size 53KB, which is more than . times smaller than the recent lattice-based framework, called . (EUROCRYPT 2024), and around three orders of magnitude smaller than Ligero (CCS 2017) and Brakedown (CRYPTO 2023).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
迁西县| 康马县| 东明县| 富裕县| 大邑县| 武山县| 安福县| 上栗县| 台山市| 陇南市| 安龙县| 舞阳县| 亳州市| 库伦旗| 镇康县| 繁昌县| 循化| 兴义市| 丹巴县| 修水县| 保定市| 揭阳市| 绥中县| 剑阁县| 仁布县| 剑阁县| 万州区| 苗栗市| 中阳县| 黑水县| 正阳县| 衡阳市| 曲阳县| 卓尼县| 荔波县| 长兴县| 柞水县| 双城市| 沈丘县| 湖南省| 五华县|