找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Martin Rasmussen Book 2007 Springer-Verlag Berlin Heidelberg 2007 Nonaut

[復(fù)制鏈接]
樓主: 胃口
31#
發(fā)表于 2025-3-26 21:14:23 | 只看該作者
Notions of Attractivity and Bifurcation,for nonautonomous dynamical systems. By a bifurcation and transition, a qualitative change of attractivity or repulsivity is meant. Due to the nonautonomous framework, it is distinguished between four distinct points of view concerning di.erent time domains. The notions of attractivity and repulsivi
32#
發(fā)表于 2025-3-27 01:23:05 | 只看該作者
Nonautonomous Morse Decompositions,s intersections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse decomposition are established with respect to the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapun
33#
發(fā)表于 2025-3-27 05:39:14 | 只看該作者
LinearSystems,ues requires linear theory. This is due to the fact that in many cases, stability properties of solutions can be derived from the linearization along the solution, the so-called variational equation. In this chapter, methods are provided for the analysis of linear systems with respect to the notions
34#
發(fā)表于 2025-3-27 13:26:48 | 只看該作者
Nonlinear Systems,r an equilibrium, a periodic solution or—in the nonautonomous context—an arbitrary solution. The construction of stable and unstable invariant manifolds goes back to . [136] and . [73]. In the sequel, the theory was extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension
35#
發(fā)表于 2025-3-27 14:46:51 | 只看該作者
Bifurcations in Dimension One,pitchfork bifurcation, both for nonautonomous bifurcations and transitions..In this chapter, only the continuous case of ordinary differential equations is treated. For analogous results in the context of difference equations, see . [145].
36#
發(fā)表于 2025-3-27 19:40:40 | 只看該作者
9樓
37#
發(fā)表于 2025-3-27 22:02:13 | 只看該作者
9樓
38#
發(fā)表于 2025-3-28 05:32:53 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 09:15:39 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 11:26:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 20:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华阴市| 陆河县| 屏南县| 沂南县| 彰武县| 瑞安市| 广灵县| 车险| 乌鲁木齐市| 资源县| 建阳市| 龙泉市| 金秀| 罗平县| 明溪县| 肥西县| 武陟县| 甘谷县| 禹州市| 拉萨市| 宕昌县| 云南省| 霍州市| 景泰县| 陈巴尔虎旗| 英德市| 于田县| 桐城市| 孟州市| 仙桃市| 于田县| 嘉定区| 华蓥市| 建水县| 扎囊县| 聂荣县| 平远县| 若尔盖县| 泗洪县| 台北县| 即墨市|