找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Attractivity and Bifurcation for Nonautonomous Dynamical Systems; Martin Rasmussen Book 2007 Springer-Verlag Berlin Heidelberg 2007 Nonaut

[復制鏈接]
樓主: 胃口
11#
發(fā)表于 2025-3-23 11:40:55 | 只看該作者
Guillaume Flandin,Marianne J. U. Novaks intersections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse decomposition are established with respect to the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapun
12#
發(fā)表于 2025-3-23 15:17:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:35:48 | 只看該作者
Lucie Hertz-Pannier,Marion Noulhianepitchfork bifurcation, both for nonautonomous bifurcations and transitions..In this chapter, only the continuous case of ordinary differential equations is treated. For analogous results in the context of difference equations, see . [145].
15#
發(fā)表于 2025-3-24 04:43:56 | 只看該作者
Attractivity and Bifurcation for Nonautonomous Dynamical Systems
16#
發(fā)表于 2025-3-24 08:08:49 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:32 | 只看該作者
18#
發(fā)表于 2025-3-24 16:36:59 | 只看該作者
Guillaume Flandin,Marianne J. U. Novak the notions of past and future attractivity and repulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous Lyapunov functions which are constant on the Morse sets are constructed explicitly. Furthermore, Morse decompositions of one-dimensional and linear systems are analyzed.
19#
發(fā)表于 2025-3-24 20:58:30 | 只看該作者
Christoph Kayser,Nikos K. Logothetisthe solution, the so-called variational equation. In this chapter, methods are provided for the analysis of linear systems with respect to the notions of attractivity and repulsivity which have been introduced in Chapter 2.
20#
發(fā)表于 2025-3-25 01:19:58 | 只看該作者
Neuroanatomy and Cortical Landmarksds goes back to . [136] and . [73]. In the sequel, the theory was extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension and from time-independent to time-dependent equations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临沧市| 炉霍县| 噶尔县| 成都市| 自贡市| 南郑县| 三台县| 射阳县| 古田县| 高雄市| 禄丰县| 东台市| 恭城| 张家口市| 太仆寺旗| 神木县| 阜宁县| 巫山县| 竹北市| 济阳县| 民乐县| 濉溪县| 合江县| 裕民县| 鹰潭市| 湘潭县| 包头市| 南乐县| 璧山县| 平山县| 和龙市| 上高县| 灌阳县| 宝兴县| 定西市| 内江市| 白朗县| 东源县| 秦安县| 高陵县| 永寿县|