找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory XVI; Nashville, TN, USA, Gregory E. Fasshauer,Marian Neamtu,Larry L. Schuma Conference proceedings 2021 Springer Natu

[復(fù)制鏈接]
樓主: obesity
21#
發(fā)表于 2025-3-25 05:36:06 | 只看該作者
22#
發(fā)表于 2025-3-25 11:04:23 | 只看該作者
Quasi-Interpolant Operators and the Solution of Fractional Differential Problems,oblem is approximated by a spline quasi-interpolant operator. This allows us to construct the numerical solution in an easy way. We show through some numerical tests that the proposed method is efficient and accurate.
23#
發(fā)表于 2025-3-25 12:52:55 | 只看該作者
24#
發(fā)表于 2025-3-25 16:49:43 | 只看該作者
25#
發(fā)表于 2025-3-25 22:31:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:36:49 | 只看該作者
Verantwortung geben und nehmen,usual properties of optimal recovery. Application examples include generation of sparse kernel-based numerical differentiation formulas for the Laplacian on a grid and accurate approximation of a function on an ellipse.
27#
發(fā)表于 2025-3-26 05:20:18 | 只看該作者
https://doi.org/10.1007/978-3-663-08476-1rs. We derive an ESPRIT-like algorithm for the generalized recovery method and illustrate, how the method can be simplified if some frequency parameters are known beforehand. Furthermore, we present a modification of Prony’s method for sparse approximation with exponential sums which leads to a non-linear least-squares problem.
28#
發(fā)表于 2025-3-26 12:31:02 | 只看該作者
-Quartic Butterfly-Spline Interpolation on Type-1 Triangulations, is obtained for enough regular functions as well as the optimal order of approximation. We construct such interpolating splines by combining a quasi-interpolating spline with one step of an interpolatory subdivision scheme. Numerical tests confirming the theoretical results are provided.
29#
發(fā)表于 2025-3-26 15:00:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同心县| 东乌珠穆沁旗| 扬州市| 邓州市| 桃源县| 闸北区| 东乡| 黄陵县| 巍山| 凭祥市| 新乡市| 台江县| 两当县| 江城| 裕民县| 囊谦县| 土默特右旗| 县级市| 湾仔区| 宝鸡市| 凭祥市| 洪雅县| 宁安市| 渭源县| 法库县| 九台市| 汉沽区| 临泉县| 乡宁县| 民县| 陵川县| 温宿县| 清远市| 南充市| 武汉市| 蒲江县| 成都市| 勐海县| 达孜县| 贵溪市| 奎屯市|