找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Approximation Theory XVI; Nashville, TN, USA, Gregory E. Fasshauer,Marian Neamtu,Larry L. Schuma Conference proceedings 2021 Springer Natu

[復(fù)制鏈接]
樓主: obesity
31#
發(fā)表于 2025-3-26 23:30:16 | 只看該作者
32#
發(fā)表于 2025-3-27 03:32:25 | 只看該作者
33#
發(fā)表于 2025-3-27 08:57:58 | 只看該作者
34#
發(fā)表于 2025-3-27 10:38:01 | 只看該作者
35#
發(fā)表于 2025-3-27 14:26:25 | 只看該作者
https://doi.org/10.1007/978-3-322-91243-5 on those integrals coming from the discretization of Boundary Integral Equations for 3D Laplace boundary value problems, using a collocation method within the Isogeometric Analysis paradigm. In such setting the regular part of the integrand can be defined as the product of a tensor product B-spline
36#
發(fā)表于 2025-3-27 19:30:50 | 只看該作者
Unternehmensführung & Controllingss of phase retrieval problems. The approach splits a standard nonlinear least squares minimizing function associated with the phase retrieval problem into the difference of two convex functions and then solves a sequence of convex minimization subproblems. For each subproblem, the Nesterov accelera
37#
發(fā)表于 2025-3-27 23:04:20 | 只看該作者
38#
發(fā)表于 2025-3-28 03:25:36 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:23 | 只看該作者
https://doi.org/10.1007/978-3-642-92406-4y available, there is a great effort in constructing efficient numerical methods for their solution. In this paper we are interested in solving boundary value problems having space derivative of fractional order. To this end, we present a collocation method in which the solution of the fractional pr
40#
發(fā)表于 2025-3-28 10:47:12 | 只看該作者
https://doi.org/10.1007/978-3-642-92406-4h the dimensionality. Sparse grids are an established technique to mitigate this curse of dimensionality, and spatial adaptivity automatically selects only the most significant grid points. To compensate for missing boundary points of the sparse grids, the B-spline basis functions so far have been m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白河县| 辛集市| 石屏县| 沾化县| 绍兴县| 德钦县| 界首市| 化隆| 南雄市| 句容市| 民权县| 桐城市| 淳安县| 老河口市| 通江县| 密云县| 土默特右旗| 岗巴县| 松原市| 微山县| 岑溪市| 明星| 维西| 游戏| 铅山县| 太和县| 积石山| 涞水县| 哈尔滨市| 惠州市| 仙居县| 周宁县| 松江区| 宣武区| 新平| 韶关市| 辽宁省| 泽库县| 沙田区| 林周县| 高青县|