找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復(fù)制鏈接]
樓主: autoantibodies
61#
發(fā)表于 2025-4-1 05:15:19 | 只看該作者
Entertainment Computing – ICEC 2022rentiation and definite integration. Then, not only almost all familiar functions, but also objects such as the δ-function, can be reinterpreted as hyperfunctions and dealt with in a unified way. In this chapter we discuss, in detail, several examples of basic hyperfunctions. We begin with character
62#
發(fā)表于 2025-4-1 07:45:00 | 只看該作者
https://doi.org/10.1007/978-3-031-20212-4ositive integers). The concept of a formal product, i.e. hyperfunctions of the form . with a hyperfunction . and a single-valued analytic function ., played a basic role. Moreover, hyperfunctions ∣.∣., ∣.∣.H(.), ∣.∣. sgn . etc. were defined for α complex. What are the relations between them and .. ,
63#
發(fā)表于 2025-4-1 10:29:11 | 只看該作者
Entertainment Computing – ICEC 2022 Thus, we now have a basis on which we can perform differentiation and integration of hyperfunctions without obstacles. In the present chapter, we start the theory of Fourier transformations of hyperfunctions. In physical sciences and engineering, some problems are conveniently dealt with by Fourier
64#
發(fā)表于 2025-4-1 15:25:20 | 只看該作者
65#
發(fā)表于 2025-4-1 20:18:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三原县| 新蔡县| 开鲁县| 安化县| 五大连池市| 松溪县| 汾阳市| 大关县| 红河县| 比如县| 高邑县| 新乐市| 泽普县| 枣强县| 手机| 文昌市| 偃师市| 宜兴市| 霸州市| 新竹县| 营山县| 美姑县| 泰顺县| 玉门市| 武宁县| 彩票| 荣成市| 曲周县| 石狮市| 商都县| 浠水县| 清镇市| 渝北区| 资阳市| 洛南县| 兴和县| 神木县| 西城区| 迁西县| 蓬溪县| 新丰县|