找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Applied Hyperfunction Theory; Isao Imai Book 1992 Springer Science+Business Media Dordrecht 1992 Fourier series.analytic function.differen

[復(fù)制鏈接]
樓主: autoantibodies
41#
發(fā)表于 2025-3-28 15:03:44 | 只看該作者
42#
發(fā)表于 2025-3-28 22:19:50 | 只看該作者
Fourier Transformation of Power-Type Hyperfunctions, as ordinary functions. However, as will be seen later, these power-type hyperfunctions play decisive roles when we investigate the asymptotic behaviour of the Fourier transforms .(ξ) = ..(.) for ξ → ∞ for a given function . (.).
43#
發(fā)表于 2025-3-29 01:35:46 | 只看該作者
44#
發(fā)表于 2025-3-29 04:21:24 | 只看該作者
45#
發(fā)表于 2025-3-29 07:45:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:53:55 | 只看該作者
Poisson-Schwarz Integral Formulae,en D is a circle or a halfplane, formulae to express the solution are known and are called the .. In this chapter, we discuss these formulae and related facts from the viewpoint of hyperfunction theory. As an example of their application we deal with integral equations related to the Hilbert transforms.
47#
發(fā)表于 2025-3-29 18:35:35 | 只看該作者
Miriam-Linnea Hale,André Melzert . = O. Therefore, ..(.) and ..(.) are simpler than .(.) itself, so that it may be convenient to consider hyperfunctions corresponding to .. (.) and ..(.) and to combine them to obtain the hyperfunction corresponding to .(.).
48#
發(fā)表于 2025-3-29 21:09:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:10:45 | 只看該作者
50#
發(fā)表于 2025-3-30 05:41:10 | 只看該作者
Periodic Hyperfunctions and Fourier Series Fourier Series,his chapter we study periodic hyperfunctions. Then we shall see that the theory of Fourier series is naturally absorbed into the theory of Fourier transformations. For this purpose, we shall first introduce the concept of standard generating functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社旗县| 阆中市| 宜丰县| 曲阳县| 渭源县| 延吉市| 大连市| 大悟县| 湟中县| 郧西县| 太谷县| 延安市| 汉寿县| 固阳县| 剑川县| 莆田市| 洱源县| 吉木萨尔县| 射阳县| 墨竹工卡县| 博乐市| 沙洋县| 庄浪县| 长沙市| 高清| 栾川县| 永和县| 邵阳市| 板桥市| 大庆市| 吉木乃县| 扶沟县| 昌都县| 宁河县| 醴陵市| 平罗县| 鄂托克旗| 浪卡子县| 丁青县| 青河县| 鄂托克前旗|