找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
31#
發(fā)表于 2025-3-27 00:43:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:33 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:47 | 只看該作者
https://doi.org/10.1007/978-3-642-91640-3Discrete systems are described by maps or?difference equations. The composition of map generates the dynamics or flow of a discrete system.?The fixed points and their characters, some important theorems, periodic cycles, attractors,?Schwarzian derivative and its properties with examples are discussed at length.
34#
發(fā)表于 2025-3-27 09:57:33 | 只看該作者
https://doi.org/10.1007/978-981-99-7695-9bifurcation theory; chaos theory; conjugacy; flows; fractals; Hamiltonian flows; Lie symmetry analysis; osc
35#
發(fā)表于 2025-3-27 17:40:56 | 只看該作者
978-981-99-7697-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
36#
發(fā)表于 2025-3-27 21:37:27 | 只看該作者
Chaos,. On the other hand, there are some universal numbers applicable for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The Lorenz system is a paradigm of deterministic dissipative chaotic systems. The universality is an important feature in chaotic dynamics.
37#
發(fā)表于 2025-3-27 23:27:51 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:06:36 | 只看該作者
40#
發(fā)表于 2025-3-28 11:35:14 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1ear system does not provide always?the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution features.?This chapter deals with oscillatory solutions in linear and nonlinear equations, their properties and some applications.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳江市| 澄江县| 玛纳斯县| 建宁县| 大城县| 新和县| 达拉特旗| 临颍县| 侯马市| 灵寿县| 阜新| 龙胜| 灵武市| 海南省| 永靖县| 临潭县| 太谷县| 新安县| 广平县| 石柱| 沈丘县| 西华县| 涞水县| 新宁县| 酒泉市| 永仁县| 定南县| 尚志市| 新龙县| 中宁县| 仙桃市| 武陟县| 崇文区| 万安县| 石楼县| 桃源县| 荔波县| 永宁县| 镇平县| 谢通门县| 凌云县|