找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
11#
發(fā)表于 2025-3-23 13:46:54 | 只看該作者
Paralysis agitans und verwandte Syndrome,y difficult to obtain except for some special nonlinear equations. The essence of this chapter is to give on finding the local solution behaviors of nonlinear systems, known as local analysis.?This chapter focuses on the qualitative analysis of two-dimensional systems.
12#
發(fā)表于 2025-3-23 14:38:35 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1ous methods for analyzing stability of a system. In fact, stability of a system plays a crucial role in the dynamics. In the context of differential equations rigorous mathematical definitions are often too restrictive in analyzing the stability of solutions.?We begin with the stability analysis of
13#
發(fā)表于 2025-3-23 18:42:36 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1 methods for linear equations are highly developed in mathematics, whereas a very little is known about nonlinear equations. Linearization of a nonlinear system does not provide always?the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution feature
14#
發(fā)表于 2025-3-24 00:40:07 | 只看該作者
https://doi.org/10.1007/978-3-663-07044-3matician . in his work. The study of bifurcation is concerned with how the structural?and qualitative?changes occur when the parameters are changing.?The co-dimensions one and two bifurcation theories with applications?are discussed at length.
15#
發(fā)表于 2025-3-24 05:17:34 | 只看該作者
16#
發(fā)表于 2025-3-24 09:53:03 | 只看該作者
17#
發(fā)表于 2025-3-24 12:18:03 | 只看該作者
https://doi.org/10.1007/978-3-662-41370-8 behaviors, and formation of periodic cycles, stabilities of the periodic cycles, and bifurcation phenomena of some special maps. Maps and their compositions represent many natural phenomena or engineering processes. We shall introduce few particular bifurcations, viz., saddle-node (fold), period-do
18#
發(fā)表于 2025-3-24 16:15:55 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:49 | 只看該作者
https://doi.org/10.1007/978-3-642-92664-8ce and theoretical studies predict some qualitative and quantitative measures for quantifying chaos. In this chapter we discuss some measures such as universal sequence (U-sequence), Lyapunov exponent, renormalization group theory, invariant measure, Poincaré section, for quantifying chaotic motions
20#
發(fā)表于 2025-3-25 01:57:37 | 只看該作者
Das statisch bestimmte Stabwerk,nce. Its applicability in medical science paves the way to identify fatal diseases, for instance, the fractal properties of the blood vessels in the retina may be useful in diagnosing the diseases of the eye or in determining the severity of the disease. Herein we begin with a detailed study of frac
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湛江市| 宝兴县| 灵寿县| 朝阳县| 平谷区| 陕西省| 邢台市| 虹口区| 华宁县| 密山市| 吉安县| 思南县| 文安县| 遂宁市| 武胜县| 灵山县| 桂东县| 松原市| 肃南| 平定县| 铜山县| 政和县| 辽阳县| 夏河县| 封丘县| 山西省| 宝兴县| 达日县| 邵阳市| 瑞金市| 南投县| 湛江市| 河源市| 绥芬河市| 浙江省| 门头沟区| 高淳县| 盖州市| 宁晋县| 余江县| 田东县|