找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復(fù)制鏈接]
樓主: 馬用
21#
發(fā)表于 2025-3-25 06:56:19 | 只看該作者
22#
發(fā)表于 2025-3-25 11:11:56 | 只看該作者
Simple Origami Geometry,fold rules and show, by examples, that it is as powerful as a straightedge and a compass. Furthermore, we show that the set of basic fold rules enables us to construct the shapes by folding by hand. The set of the basic fold rules is the main ingredient of more powerful Huzita-Justin’s fold rules that we discuss in Chapter ..
23#
發(fā)表于 2025-3-25 13:22:19 | 只看該作者
24#
發(fā)表于 2025-3-25 16:51:43 | 只看該作者
https://doi.org/10.1007/978-94-015-0602-1lds. The knot folds are the combination of superpositions of faces and insertions of faces into the slits between the face layers. The inserts enable the knot to be rigid. We use Huzita-Justin folds as the basis of the knot folds and extend them to allow for the knot folds.
25#
發(fā)表于 2025-3-25 23:22:58 | 只看該作者
Logical Analysis of Huzita-Justin Folds, folded. The obtained solutions, both in numeric and symbolic forms, make origami computationally tractable for further treatments, such as visualization and automated verification of the correctness of the origami construction.
26#
發(fā)表于 2025-3-26 02:28:53 | 只看該作者
27#
發(fā)表于 2025-3-26 04:33:17 | 只看該作者
0943-853X d graphical images to do so. In turn, it discusses the verification of origami using computer software and symbolic computation tools. The binary code for the origami software, called Eos and created by the author, is also provided..978-3-319-59189-6Series ISSN 0943-853X Series E-ISSN 2197-8409
28#
發(fā)表于 2025-3-26 08:50:12 | 只看該作者
29#
發(fā)表于 2025-3-26 14:45:12 | 只看該作者
30#
發(fā)表于 2025-3-26 17:18:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
依兰县| 牡丹江市| 当涂县| 南漳县| 开平市| 望奎县| 福清市| 汶上县| 枝江市| 赞皇县| 乌鲁木齐县| 辰溪县| 称多县| 宝坻区| 凤凰县| 石河子市| 如皋市| 台北县| 莱芜市| 左权县| 诸暨市| 筠连县| 榆社县| 三原县| 云林县| 阿荣旗| 东方市| 绥棱县| 绥阳县| 历史| 青岛市| 永清县| 洪洞县| 南漳县| 电白县| 库车县| 淳安县| 金堂县| 海原县| 榆树市| 鄂州市|