找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復(fù)制鏈接]
查看: 27149|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:24:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱An Introduction to Computational Origami
影響因子2023Tetsuo Ida
視頻videohttp://file.papertrans.cn/156/155186/155186.mp4
發(fā)行地址Treats origami as basic geometrical operations that are represented and manipulated symbolically and graphically by computers.Includes detailed explanations how classical and modern geometrical proble
學(xué)科分類Texts & Monographs in Symbolic Computation
圖書封面Titlebook: An Introduction to Computational Origami;  Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.
影響因子.In this book, origami is treated as a set of basic geometrical?objects?that are represented and manipulated symbolically and graphically by computers. Focusing on how classical and modern geometrical problems are solved by means of origami, the book explains the methods not only with mathematical rigor but also by appealing to our scientific intuition, combining mathematical formulas and graphical images to do so. In turn, it discusses the verification of origami using computer software and symbolic computation tools. The binary code for the origami software, called Eos and created by the author, is also provided..
Pindex Book 2020
The information of publication is updating

書目名稱An Introduction to Computational Origami影響因子(影響力)




書目名稱An Introduction to Computational Origami影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Computational Origami網(wǎng)絡(luò)公開(kāi)度




書目名稱An Introduction to Computational Origami網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱An Introduction to Computational Origami被引頻次




書目名稱An Introduction to Computational Origami被引頻次學(xué)科排名




書目名稱An Introduction to Computational Origami年度引用




書目名稱An Introduction to Computational Origami年度引用學(xué)科排名




書目名稱An Introduction to Computational Origami讀者反饋




書目名稱An Introduction to Computational Origami讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:16 | 只看該作者
Tetsuo IdaTreats origami as basic geometrical operations that are represented and manipulated symbolically and graphically by computers.Includes detailed explanations how classical and modern geometrical proble
板凳
發(fā)表于 2025-3-22 00:43:20 | 只看該作者
地板
發(fā)表于 2025-3-22 07:44:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:54:51 | 只看該作者
6#
發(fā)表于 2025-3-22 16:47:44 | 只看該作者
https://doi.org/10.1007/978-3-319-59189-6paper fold; Euclid and Origami geometry; Groebner basis; automated theorem proving; origami geometry
7#
發(fā)表于 2025-3-22 17:28:11 | 只看該作者
Springer Nature Switzerland AG 2020
8#
發(fā)表于 2025-3-22 21:47:56 | 只看該作者
Die Sichtbarmachung des Unsichtbarenhools. We construct those shapes usually by a straightedge and a compass, so-called a Euclidian tool of construction. We explain the set of the basic fold rules and show, by examples, that it is as powerful as a straightedge and a compass. Furthermore, we show that the set of basic fold rules enable
9#
發(fā)表于 2025-3-23 02:37:06 | 只看該作者
https://doi.org/10.1007/978-3-663-04661-5ometric objects. We show that Huzita-Justin’s basic folds can construct them without such tools but by hand. We reformulate Huzita-Justin’s fold rules by giving them precise conditions for their use. We prove that we can decide whether, by the reformulated rules, we can perform a fold as specified b
10#
發(fā)表于 2025-3-23 05:53:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 06:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
诸暨市| 阿勒泰市| 抚远县| 策勒县| 甘德县| 仁布县| 凯里市| 甘孜县| 新郑市| 韩城市| 特克斯县| 施甸县| 宣汉县| 长岭县| 永康市| 色达县| 苗栗市| 延津县| 札达县| 乌什县| 河曲县| 方城县| 独山县| 万全县| 禹城市| 江达县| 涿州市| 巩义市| 东兴市| 赞皇县| 义乌市| 老河口市| 辽宁省| 凉城县| 通辽市| 满洲里市| 盐亭县| 乐至县| 百色市| 文成县| 信丰县|