找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco?ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 調(diào)停
61#
發(fā)表于 2025-4-1 03:30:43 | 只看該作者
Real Closed Fields,described in the second section. The fourth section is devoted to several important applications of the projection theorem, of logical and geometric nature. In the last section, an important example of a non-archimedean real closed field is described: the field of Puiseux series.
62#
發(fā)表于 2025-4-1 06:53:51 | 只看該作者
Semi-Algebraic Sets,itute a real closed field containing infinitesimals, closely related to the field of Puiseux series, and play an important role throughout the whole book. We end the chapter with a section on semi-algebraic differentiable functions.
63#
發(fā)表于 2025-4-1 13:00:09 | 只看該作者
64#
發(fā)表于 2025-4-1 17:16:24 | 只看該作者
Elements of Topology,r homology that applies only to simplicial complexes. In the second section, we show how to extend this theory to closed semi-algebraic sets using the triangulation theorem proved in Chapter 5. Finally, in the third section we define the Euler-Poincare characteristic for locally closed semi-algebraic sets.
65#
發(fā)表于 2025-4-1 19:57:37 | 只看該作者
Complexity of Basic Algorithms,atic forms. In Section 3, we study remainder sequences and the related notion of subresultant polynomials. The algorithms in this chapter are very basic and will be used throughout the other chapters of the book.
66#
發(fā)表于 2025-4-2 00:08:01 | 只看該作者
Real Roots,y for archimedean real closed fields. In the second part of the chapter we study exact methods working in general real closed fields. Section 3 is devoted to exact sign determination in a real closed field and Section 4 to characterizations of roots in a real closed field.
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汕尾市| 宣化县| 潜山县| 大姚县| 寻甸| 平利县| 芒康县| 时尚| 旬邑县| 马尔康县| 扎囊县| 新田县| 泰安市| 方山县| 固原市| 恩平市| 乐清市| 淳化县| 台北县| 万源市| 常熟市| 宕昌县| 邯郸市| 德保县| 同江市| 兴义市| 漾濞| 迁西县| 宜宾市| 达尔| 临沂市| 永平县| 永康市| 增城市| 兰坪| 拉萨市| 鄂托克旗| 涞水县| 南昌县| 延长县| 崇阳县|