找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco?ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 調(diào)停
11#
發(fā)表于 2025-3-23 09:44:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:49:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:57 | 只看該作者
Computing Roadmaps and Connected Components of Semi-algebraic Sets,s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
17#
發(fā)表于 2025-3-24 14:19:01 | 只看該作者
Therapieoptionen bei der Schmerzbehandlung,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
18#
發(fā)表于 2025-3-24 15:40:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:47 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
Introduction,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永安市| 海南省| 鱼台县| 阳山县| 瑞丽市| 庆元县| 崇明县| 新疆| 林周县| 通化市| 新余市| 紫阳县| 通河县| 云南省| 黔江区| 绥棱县| 东光县| 云安县| 望谟县| 苏尼特左旗| 额尔古纳市| 壶关县| 罗平县| 布尔津县| 广州市| 玛多县| 平阳县| 固始县| 建水县| 河东区| 克什克腾旗| 安康市| 建阳市| 都兰县| 永济市| 佳木斯市| 朝阳市| 莲花县| 新野县| 阳西县| 疏勒县|