找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; Richard Tolimieri,Chao Lu,Myoung An Book 1997Latest edition Springer-Verlag New

[復(fù)制鏈接]
樓主: 動(dòng)詞
41#
發(fā)表于 2025-3-28 18:08:13 | 只看該作者
42#
發(fā)表于 2025-3-28 20:04:58 | 只看該作者
https://doi.org/10.1007/978-3-662-06552-5iate composite size cases. The method is completely algebraic and results in composite size algorithms whose factors contain tensor products of prime size factors. However, these results are not totally appealing since complex permutations appear. A related problem is that tensor products are taken over direct sum factors.
43#
發(fā)表于 2025-3-29 02:14:27 | 只看該作者
44#
發(fā)表于 2025-3-29 04:24:55 | 只看該作者
45#
發(fā)表于 2025-3-29 11:04:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:22:15 | 只看該作者
47#
發(fā)表于 2025-3-29 17:31:07 | 只看該作者
Linear and Cyclic Convolutions,onvolution by an FT of the corresponding size. In the last ten years, theoretically better convolution algorithms have been developed. The Winograd Small Convolution algorithm [1] is the most efficient as measured by the number of multiplications.
48#
發(fā)表于 2025-3-29 22:55:25 | 只看該作者
49#
發(fā)表于 2025-3-30 03:58:20 | 只看該作者
MFTA: The Prime Case,n theorem that returns the computation to an FT computation. Since the size (p-1) is a composite number, the (p-1)-point FT can be implemented by Cooley-Tukey FFT algorithms. The Winograd algorithm for small convolutions also can be applied to the skew-circulant action. (See problems 3, 4 and 5 for basic properties of skew-circulant matrices.)
50#
發(fā)表于 2025-3-30 06:16:51 | 只看該作者
MFTA: Product of Two Distinct Primes,iate composite size cases. The method is completely algebraic and results in composite size algorithms whose factors contain tensor products of prime size factors. However, these results are not totally appealing since complex permutations appear. A related problem is that tensor products are taken over direct sum factors.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 19:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江西省| 青田县| 兴文县| 如东县| 内丘县| 丹江口市| 日喀则市| 宜良县| 安丘市| 绥滨县| 宁城县| 陇南市| 康定县| 洪洞县| 大理市| 景德镇市| 沧源| 遂平县| 健康| 商水县| 芒康县| 原平市| 双流县| 宜兰市| 福州市| 宁武县| 宜黄县| 宜君县| 板桥市| 边坝县| 千阳县| 福泉市| 榆中县| 嘉义市| 元阳县| 荃湾区| 定州市| 达孜县| 东源县| 宜都市| 金阳县|