找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; Richard Tolimieri,Chao Lu,Myoung An Book 1997Latest edition Springer-Verlag New

[復(fù)制鏈接]
樓主: 動詞
51#
發(fā)表于 2025-3-30 08:17:59 | 只看該作者
52#
發(fā)表于 2025-3-30 16:06:39 | 只看該作者
53#
發(fā)表于 2025-3-30 20:24:02 | 只看該作者
Good-Thomas PFA,e multiplicative structure can be applied, in the case of transform size . = ., where . and . are relatively prime, to design an FT algorithm that is similar in structure to these additive algorithms but no longer requires the twiddle factor multiplication. The idea is due to Good [2] in 1958 and Th
54#
發(fā)表于 2025-3-30 20:43:04 | 只看該作者
Linear and Cyclic Convolutions, convolution is to zero-tap, turning the linear convolution into a cyclic convolution, and to use the convolution theorem, which replaces the cyclic convolution by an FT of the corresponding size. In the last ten years, theoretically better convolution algorithms have been developed. The Winograd Sm
55#
發(fā)表于 2025-3-31 03:25:32 | 只看該作者
Agarwal-Cooley Convolution Algorithm,hods are required. First, as discussed in chapter 6, these algorithms keep the number of required multiplications small, but they can require many additions. Also, each size requires a different algorithm. There is no uniform tructure that can be repeatedly called upon. In this chapter, a technique
56#
發(fā)表于 2025-3-31 07:10:21 | 只看該作者
57#
發(fā)表于 2025-3-31 12:37:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂溪县| 安岳县| 镇远县| 贵阳市| 新竹市| 丽水市| 静宁县| 湟源县| 韩城市| 贵港市| 龙岩市| 柏乡县| 平罗县| 疏附县| 公安县| 舒兰市| 江华| 呼玛县| 宝山区| 鲜城| 收藏| 沭阳县| 子长县| 轮台县| 莆田市| 广元市| 抚顺县| 吴堡县| 杭锦后旗| 祁连县| 临泽县| 宜宾市| 辽阳市| 沽源县| 嘉善县| 女性| 晋宁县| 万安县| 平罗县| 莫力| 和平县|