找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr

[復(fù)制鏈接]
樓主: 無限
21#
發(fā)表于 2025-3-25 03:48:48 | 只看該作者
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
22#
發(fā)表于 2025-3-25 10:20:36 | 只看該作者
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form
23#
發(fā)表于 2025-3-25 13:04:03 | 只看該作者
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..
24#
發(fā)表于 2025-3-25 16:41:11 | 只看該作者
25#
發(fā)表于 2025-3-25 20:21:27 | 只看該作者
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
26#
發(fā)表于 2025-3-26 02:11:58 | 只看該作者
27#
發(fā)表于 2025-3-26 08:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:46 | 只看該作者
978-1-4419-3149-8Springer-Verlag New York 2001
29#
發(fā)表于 2025-3-26 16:26:52 | 只看該作者
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
30#
發(fā)表于 2025-3-26 18:25:48 | 只看該作者
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 05:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
军事| 银川市| 贞丰县| 台江县| 龙胜| 澄迈县| 涪陵区| 宝清县| 盐山县| 左云县| 江达县| 长沙县| 兴和县| 桃园县| 建始县| 滁州市| 沽源县| 涪陵区| 金塔县| 平阴县| 佛学| 津市市| 鹤岗市| 鹤山市| 奉贤区| 高陵县| 青州市| 玉林市| 太谷县| 巨野县| 杭锦旗| 京山县| 张家川| 汕尾市| 福贡县| 木兰县| 即墨市| 连江县| 巴南区| 内江市| 阜康市|