找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr

[復(fù)制鏈接]
查看: 48632|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:12:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Algebraic Surfaces
影響因子2023Lucian B?descu
視頻videohttp://file.papertrans.cn/153/152708/152708.mp4
學(xué)科分類Universitext
圖書封面Titlebook: Algebraic Surfaces;  Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr
影響因子The aim of this book is to present certain fundamental facts in the theory of algebraic surfaces, defined over an algebraically closed field lk of arbitrary characteristic. The book is based on a series of talks given by the author in the Algebraic Geometry seminar at the Faculty of Mathematics, University of Bucharest. The main goal is the classification of nonsingular projective surfaces (also called simply surfaces). In the context of complex algebraic varieties, the classification was obtained by Enriques and Castelnuovo. Around 1960, Kodaira [Kodl, Kod2] revived and simplified the classification of complex algebraic surfaces and extended it to the case of compact analytic surfaces. The problem of classifying surfaces in arbitrary characteristic remained open. The first step in this direction was the purely algebraic proof (valid in arbitrary characteristic), due to Zariski [Zarl, Zar2], of Castelnuovo‘s criterion of rationality. Then Mumford [Mum3, Mum4] introduced several new ideas, and the classification of surfaces in positive characteristic be- came possible. Finally, Bombieri and Mumford [BMl, BM2] completed the classification of surfaces in arbitrary characteristic. Thei
Pindex Textbook 2001
The information of publication is updating

書目名稱Algebraic Surfaces影響因子(影響力)




書目名稱Algebraic Surfaces影響因子(影響力)學(xué)科排名




書目名稱Algebraic Surfaces網(wǎng)絡(luò)公開度




書目名稱Algebraic Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Surfaces被引頻次




書目名稱Algebraic Surfaces被引頻次學(xué)科排名




書目名稱Algebraic Surfaces年度引用




書目名稱Algebraic Surfaces年度引用學(xué)科排名




書目名稱Algebraic Surfaces讀者反饋




書目名稱Algebraic Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:28:26 | 只看該作者
Algebraic Surfaces978-1-4757-3512-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
板凳
發(fā)表于 2025-3-22 02:28:38 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:49 | 只看該作者
Deformation Processes in TRIP/TWIP SteelsThroughout this chapter . will denote a nonsingular projective surface defined over an algebraically closed field k of arbitrary characteristic, and . will denote a canonical divisor on ..
5#
發(fā)表于 2025-3-22 10:12:43 | 只看該作者
6#
發(fā)表于 2025-3-22 14:20:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:33 | 只看該作者
https://doi.org/10.1007/978-1-4419-1596-2From this point on by . we mean a nonsingular projective surface . defined over an algebraically closed field k of arbitrary characteristic. When we have to deal with surfaces with singularities, we state that explicitly (for example: let . be a normal surface...).
8#
發(fā)表于 2025-3-22 22:14:49 | 只看該作者
https://doi.org/10.1007/978-1-4419-1596-2Let . be a surface. . is a . if every birational morphism . → ., with . surface (nonsingular and projective, just like .), is an isomorphism.
9#
發(fā)表于 2025-3-23 03:58:31 | 只看該作者
Cohomology of Current Lie AlgebrasLet .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
10#
發(fā)表于 2025-3-23 08:02:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 长寿区| 霍城县| 子长县| 兴山县| 琼结县| 五台县| 双峰县| 武安市| 钦州市| 东城区| 五莲县| 长丰县| 滦平县| 彩票| 阿拉尔市| 柞水县| 海安县| 古丈县| 延庆县| 郁南县| 黄骅市| 凉山| 微山县| 金华市| 陆川县| 天台县| 田东县| 乃东县| 龙泉市| 昌都县| 滕州市| 资阳市| 德令哈市| 裕民县| 宝兴县| 胶南市| 阿城市| 阳城县| 义乌市| 合水县|