找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti

[復(fù)制鏈接]
樓主: T-Lymphocyte
41#
發(fā)表于 2025-3-28 18:29:11 | 只看該作者
42#
發(fā)表于 2025-3-28 22:12:09 | 只看該作者
43#
發(fā)表于 2025-3-29 01:39:26 | 只看該作者
https://doi.org/10.1007/978-90-481-2703-0 written in stationary manifold coordinates, which demonstrates the close relationship between the Hamiltonian formulations of nonlinear evolution equation (PDE) and its stationary reduction. We illustrate these ideas in the context of the KdV and 5. order KdV equations..We then apply these ideas to
44#
發(fā)表于 2025-3-29 06:29:13 | 只看該作者
Immaculate K. Namukas,Ronald Buyethe structure given by compatibility is bound to the situation of hamiltonian dynamic systems and how much of that can be transferred to a complete abstract situation where the algebraic structures under consideration are given by bilinear maps on some module over a commutative ring. Under suitable
45#
發(fā)表于 2025-3-29 09:46:49 | 只看該作者
46#
發(fā)表于 2025-3-29 12:04:51 | 只看該作者
https://doi.org/10.1007/3-7908-1670-1and show that the analysis of the higher order terms provides a sufficient condition for asymptotic integrability of the original equation. The nonintegrable effects, which we call “obstacles” to the integrability, are shown to result in an inelasticity in soliton interaction. The main technique use
47#
發(fā)表于 2025-3-29 18:54:06 | 只看該作者
48#
發(fā)表于 2025-3-29 21:58:11 | 只看該作者
49#
發(fā)表于 2025-3-30 01:24:12 | 只看該作者
50#
發(fā)表于 2025-3-30 07:58:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
科技| 六盘水市| 冷水江市| 玉树县| 大英县| 衡山县| 新津县| 化州市| 泰兴市| 穆棱市| 泰来县| 荥经县| 铜梁县| 赣榆县| 隆安县| 禄劝| 巨野县| 略阳县| 凤城市| 泸州市| 宣汉县| 延边| 青州市| 南充市| 阳朔县| 延津县| 江门市| 色达县| 碌曲县| 密山市| 长丰县| 淳安县| 安陆市| 镇赉县| 南充市| 贵州省| 金门县| 特克斯县| 平阳县| 霍城县| 鄂州市|