找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebraic Aspects of Integrable Systems; In Memory of Irene D A. S. Fokas,I. M. Gelfand Book 1997 Birkh?user Boston 1997 algebra.differenti

[復(fù)制鏈接]
樓主: T-Lymphocyte
11#
發(fā)表于 2025-3-23 11:52:05 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:19 | 只看該作者
13#
發(fā)表于 2025-3-23 18:58:31 | 只看該作者
,Multiscale Expansions, Symmetries and the Nonlinear Schr?dinger Hierarchy,ons, using a multitime expansion. In the case of pure radiation, we show that the asymptotic character of this expansion is guaranted by requiring that the modulation of the leading amplitude of the waves satisfy the nonlinear Schrodinger hierarchy of evolution equations with respect to the slow spa
14#
發(fā)表于 2025-3-23 23:04:08 | 只看該作者
15#
發(fā)表于 2025-3-24 02:59:58 | 只看該作者
https://doi.org/10.1007/3-7908-1670-1oes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the f
16#
發(fā)表于 2025-3-24 06:39:45 | 只看該作者
On the r-Matrix Structure of the Neumann System and its Discretizations,oes into the continuous one in a suitable asymptotic limit, together with integrals of motion and Poisson structure, or require that Poisson structure and integrals of motion be exactly preserved by the discretisation. Stationary or restricted flow technique typically lead to discretisation of the f
17#
發(fā)表于 2025-3-24 12:39:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:37:52 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:30 | 只看該作者
A Theorem of Bochner, Revisited,d Orlov and Schulman [26]. They are intimately related to the bihamiltonian nature of the equations of the theory of solitons which was pioneered in the work of Magri [23] and Gel’fand and Dorfman [11].
20#
發(fā)表于 2025-3-25 00:07:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邻水| 庆阳市| 绥滨县| 永修县| 商河县| 永平县| 鄂托克前旗| 辽阳市| 禹城市| 静乐县| 江源县| 新民市| 霍城县| 兴仁县| 任丘市| 义马市| 墨竹工卡县| 汉寿县| 德保县| 西和县| 大田县| 武宣县| 六枝特区| 新密市| 新平| 依兰县| 宜都市| 桃园县| 鸡东县| 景德镇市| 宿州市| 惠州市| 余江县| 金堂县| 江永县| 尼木县| 临潭县| 隆化县| 康平县| 岑巩县| 贵州省|