找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Why Prove it Again?; Alternative Proofs i John W. Dawson, Jr. Book 2015 Springer International Publishing Switzerland 2015 Alternative Proo

[復(fù)制鏈接]
樓主: HEMI
31#
發(fā)表于 2025-3-26 22:48:00 | 只看該作者
The Fundamental Theorem of Algebra,ed to alternative proof strategies, and we can analyze why the proof given by Gauss in his 1799 inaugural dissertation was the first to be accorded general acceptance, though it too would later be deemed not fully rigorous.
32#
發(fā)表于 2025-3-27 01:07:09 | 只看該作者
as opposed to the formal notion of proof in mathematical log.This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new
33#
發(fā)表于 2025-3-27 08:48:26 | 只看該作者
The Pythagorean Theorem,known formulation concerning arbitrary ‘figures’ described on the sides of a right triangle. The first of those demonstrations is based on a comparison of areas and the second on similarity theory, a basic distinction that can be used as a first step in classifying many other proofs of the theorem as well.
34#
發(fā)表于 2025-3-27 12:19:50 | 只看該作者
The Fundamental Theorem of Arithmetic,rts: First, every integer greater than 1 . a factorization into primes; second, any two factorizations of an integer greater than 1 into primes must be identical except for the order of the factors. The proofs of each of those parts will thus be considered separately.
35#
發(fā)表于 2025-3-27 16:28:55 | 只看該作者
The Infinitude of the Primes,rces, including many by eminent number theorists, that either erroneously describe the structure of Euclid’s proof or make false historical claims about it. It is wise, therefore, to begin by quoting Euclid’s argument directly, as it is given in Heath’s translation (Heath?., vol.?II, p.?412).
36#
發(fā)表于 2025-3-27 19:59:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:47 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:24 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:32 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿瓦提县| 长宁区| 壶关县| 门源| 吉隆县| 乌鲁木齐市| 遵化市| 沙田区| 湘阴县| 长汀县| 德令哈市| 永和县| 固阳县| 阿拉善右旗| 将乐县| 永清县| 荔波县| 繁昌县| 滦平县| 中方县| 江阴市| 新郑市| 温泉县| 安达市| 昌宁县| 英山县| 涿鹿县| 昌平区| 永州市| 黔东| 南皮县| 浮山县| 宁武县| 宜丰县| 额尔古纳市| 建德市| 白城市| 余干县| 高青县| 东乌珠穆沁旗| 怀宁县|