找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Why Prove it Again?; Alternative Proofs i John W. Dawson, Jr. Book 2015 Springer International Publishing Switzerland 2015 Alternative Proo

[復(fù)制鏈接]
樓主: HEMI
21#
發(fā)表于 2025-3-25 03:47:14 | 只看該作者
22#
發(fā)表于 2025-3-25 08:51:31 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:29 | 只看該作者
The Fundamental Theorem of Arithmetic, the factors. The theorem is often credited to Euclid, but was apparently first stated in that generality by Gauss. Note that the statement has two parts: First, every integer greater than 1 . a factorization into primes; second, any two factorizations of an integer greater than 1 into primes must b
24#
發(fā)表于 2025-3-25 18:39:55 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:15 | 只看該作者
The Fundamental Theorem of Algebra,ce. Like the Pythagorean Theorem, the Fundamental Theorem of Algebra has been proved in many different ways since its enunciation by Euler in 1739. Unlike the Pythagorean Theorem, however, early attempts to prove the Fundamental Theorem of Algebra are not shrouded in the mists of antiquity, so we kn
26#
發(fā)表于 2025-3-26 00:36:33 | 只看該作者
27#
發(fā)表于 2025-3-26 08:11:43 | 只看該作者
28#
發(fā)表于 2025-3-26 10:10:36 | 只看該作者
Other Case Studies,avor and that the informal criteria for distinguishing proofs described in Chapter?. serve that purpose well. I hope too that some of the proofs discussed in those chapters will have been new to most readers, who will have found them to possess both intrinsic interest and pedagogical value.This fina
29#
發(fā)表于 2025-3-26 15:20:09 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大港区| 甘洛县| 汕尾市| 仙桃市| 阿克陶县| 平果县| 准格尔旗| 盐津县| 永丰县| 大荔县| 永昌县| 绥化市| 谢通门县| 通山县| 新和县| 蒙自县| 呼和浩特市| 余江县| 商洛市| 佳木斯市| 左云县| 葵青区| 石城县| 临沭县| 巧家县| 德庆县| 拉孜县| 嫩江县| 进贤县| 府谷县| 南宫市| 涿鹿县| 措美县| 通辽市| 漯河市| 清新县| 通河县| 清流县| 思南县| 来宾市| 威远县|