找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Why Prove it Again?; Alternative Proofs i John W. Dawson, Jr. Book 2015 Springer International Publishing Switzerland 2015 Alternative Proo

[復制鏈接]
樓主: HEMI
21#
發(fā)表于 2025-3-25 03:47:14 | 只看該作者
22#
發(fā)表于 2025-3-25 08:51:31 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:29 | 只看該作者
The Fundamental Theorem of Arithmetic, the factors. The theorem is often credited to Euclid, but was apparently first stated in that generality by Gauss. Note that the statement has two parts: First, every integer greater than 1 . a factorization into primes; second, any two factorizations of an integer greater than 1 into primes must b
24#
發(fā)表于 2025-3-25 18:39:55 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:15 | 只看該作者
The Fundamental Theorem of Algebra,ce. Like the Pythagorean Theorem, the Fundamental Theorem of Algebra has been proved in many different ways since its enunciation by Euler in 1739. Unlike the Pythagorean Theorem, however, early attempts to prove the Fundamental Theorem of Algebra are not shrouded in the mists of antiquity, so we kn
26#
發(fā)表于 2025-3-26 00:36:33 | 只看該作者
27#
發(fā)表于 2025-3-26 08:11:43 | 只看該作者
28#
發(fā)表于 2025-3-26 10:10:36 | 只看該作者
Other Case Studies,avor and that the informal criteria for distinguishing proofs described in Chapter?. serve that purpose well. I hope too that some of the proofs discussed in those chapters will have been new to most readers, who will have found them to possess both intrinsic interest and pedagogical value.This fina
29#
發(fā)表于 2025-3-26 15:20:09 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐亭县| 洛隆县| 宜春市| 类乌齐县| 罗田县| 重庆市| 临朐县| 东丰县| 肇庆市| 三门峡市| 淮滨县| 松溪县| 芜湖县| 苍溪县| 南靖县| 祁门县| 磐安县| 平顺县| 昂仁县| 鹤壁市| 南和县| 陕西省| 聊城市| 房产| 若尔盖县| 阳城县| 鄯善县| 同心县| 虞城县| 乐山市| 台北市| 马山县| 朝阳县| 宜良县| 搜索| 社旗县| 兴山县| 昭平县| 缙云县| 湖口县| 南通市|