找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 13 Lectures on Fermat‘s Last Theorem; Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti

[復(fù)制鏈接]
查看: 35105|回復(fù): 53
樓主
發(fā)表于 2025-3-21 17:57:10 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱13 Lectures on Fermat‘s Last Theorem
影響因子2023Paulo Ribenboim
視頻videohttp://file.papertrans.cn/101/100297/100297.mp4
圖書封面Titlebook: 13 Lectures on Fermat‘s Last Theorem;  Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti
Pindex Book 1979
The information of publication is updating

書目名稱13 Lectures on Fermat‘s Last Theorem影響因子(影響力)




書目名稱13 Lectures on Fermat‘s Last Theorem影響因子(影響力)學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem網(wǎng)絡(luò)公開度




書目名稱13 Lectures on Fermat‘s Last Theorem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem被引頻次




書目名稱13 Lectures on Fermat‘s Last Theorem被引頻次學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem年度引用




書目名稱13 Lectures on Fermat‘s Last Theorem年度引用學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem讀者反饋




書目名稱13 Lectures on Fermat‘s Last Theorem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:24:05 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0d not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Ferma
地板
發(fā)表于 2025-3-22 04:59:10 | 只看該作者
5#
發(fā)表于 2025-3-22 09:03:42 | 只看該作者
Kentaro Takami,Luciano Rezzolla,Luca Baiottients. He was able to derive congruences, involving Bernoulli numbers, which must be satisfied by any would-be solution. From these congruences, he derived specific divisibility properties about Bernoulli numbers.
6#
發(fā)表于 2025-3-22 13:53:22 | 只看該作者
Ulrich Spandau,Mitrofanis Pavlidision to the intrinsic interest of this modified problem, I mentioned in my fourth lecture how Sophie Germain’s criterion for the first case involves Fermat’s congruence modulo some prime. Accordingly, I will begin by studying the Fermat equation over prime fields.
7#
發(fā)表于 2025-3-22 20:03:34 | 只看該作者
Using Magentix2 in Smart-Home EnvironmentsPierre de Fermat (1601–1665) was a French judge who lived in Toulouse. He was a universal spirit, cultivating poetry, Greek philology, law but mainly mathematics. His special interest concerned the solutions of equations in integers.
8#
發(fā)表于 2025-3-22 21:51:02 | 只看該作者
9#
發(fā)表于 2025-3-23 02:23:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:28:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射阳县| 阿图什市| 库车县| 衢州市| 海盐县| 巴林右旗| 信阳市| 桂东县| 化州市| 柳州市| 来安县| 双辽市| 崇明县| 克什克腾旗| 博野县| 海丰县| 车致| 武宁县| 锡林浩特市| 彩票| 确山县| 双江| 方正县| 榕江县| 炉霍县| 额敏县| 镇赉县| 舒城县| 美姑县| 沈阳市| 余姚市| 信阳市| 横峰县| 镇康县| 宣武区| 定襄县| 六安市| 芮城县| 卫辉市| 桐梓县| 南华县|