找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 13 Lectures on Fermat‘s Last Theorem; Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti

[復(fù)制鏈接]
樓主: industrious
11#
發(fā)表于 2025-3-23 13:36:45 | 只看該作者
Ulrich Spandau,Mitrofanis PavlidisIn this lecture, I’ll present results obtained by various new methods. My choice is rather encompassing. There are some attempts, which belong among those described in my Lecture IV, on the na?ve approach. Others involve penetrating studies of the class group. And entirely new avenues are opening with ideas from the theory of algebraic functions.
12#
發(fā)表于 2025-3-23 14:48:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:23:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:46:58 | 只看該作者
Overview: 978-1-4419-2809-2978-1-4684-9342-9
15#
發(fā)表于 2025-3-24 02:36:41 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0er than Fermat’s time. As Zassenhaus kindly pointed out to me, 2 is the oddest of the primes. Among its special properties, this oddest of all the primes is even; it is also the only exponent for which it is known that the Fermat equation has a nontrivial solution.
16#
發(fā)表于 2025-3-24 08:14:29 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0d not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Fermat’s.
17#
發(fā)表于 2025-3-24 13:10:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:04 | 只看該作者
Ulrich Spandau,Mitrofanis Pavlidision to the intrinsic interest of this modified problem, I mentioned in my fourth lecture how Sophie Germain’s criterion for the first case involves Fermat’s congruence modulo some prime. Accordingly, I will begin by studying the Fermat equation over prime fields.
19#
發(fā)表于 2025-3-24 19:13:52 | 只看該作者
https://doi.org/10.1007/978-1-4684-9342-9Fermatsches Problem; Mersenne prime; arithmetic; elliptic curve; number theory; prime number
20#
發(fā)表于 2025-3-25 01:44:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云和县| 临澧县| 毕节市| 武汉市| 菏泽市| 行唐县| 井陉县| 商丘市| 武义县| 巴塘县| 和龙市| 芒康县| 义乌市| 昌图县| 兴国县| 邵阳县| 夹江县| 长武县| 洛川县| 汶上县| 新兴县| 江口县| 凌云县| 金山区| 达拉特旗| 临泉县| 阳泉市| 沧州市| 秦皇岛市| 安庆市| 嘉黎县| 雅安市| 榆树市| 罗江县| 大同县| 常州市| 常宁市| 金溪县| 同心县| 格尔木市| 湘潭县|