找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vorlesungen über h?here Geometrie; Mit zahlr. Aufgaben, Oswald Giering Book 1982 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschwei

[復(fù)制鏈接]
樓主: 熱愛
51#
發(fā)表于 2025-3-30 08:57:31 | 只看該作者
52#
發(fā)表于 2025-3-30 12:40:34 | 只看該作者
,Projektive Nichtstandardmodelle von Cayley/Klein-R?umen,Zahlreiche mathematische Strukturen sind als CK-R?ume interpretierbar. Wir geben dafür Beispiele in Form von Nichtstandardmodellen von CK-R?umen.
53#
發(fā)表于 2025-3-30 18:07:42 | 只看該作者
54#
發(fā)表于 2025-3-30 22:30:34 | 只看該作者
55#
發(fā)表于 2025-3-31 02:49:25 | 只看該作者
,Cayley/Klein-Geometrien in entarteten Cayley/Klein-R?umen,Die Anf?nge der nach L. benannten CK-Geometrien finden sich in Arbeiten von L.[1] S.592–670. Wir erkl?ren die Standardmodelle der .-Geometrien für beliebige endliche Dimension n-1.
56#
發(fā)表于 2025-3-31 07:32:49 | 只看該作者
Quadriken, und Hyperebenentripel, die Punkte- und Hyperebenenquadrupel in harmonischer Lage und andere Punktmengen kennengelernt. Eine weitere Klasse projektivinvarianter Teilmengen sind die Quadriken, die wie folgt definiert werden.
57#
發(fā)表于 2025-3-31 12:57:06 | 只看該作者
,Kinematische Modelle von Cayley/Klein-R?umen,bijektiv auf die Punkte eines Raumes abzubilden, so entsteht ein . dieses Raumes. Wir betrachten in diesem Kapitel kinematische Modelle von CK- R?umen, denen Bewegungsgruppen von CK-R?umen zugrundeliegen.
58#
發(fā)表于 2025-3-31 15:32:24 | 只看該作者
Beziehungen zwischen Cayley/Klein-Geometrien,n Raumes . (n ≥ 1) vom Index q. ≥ 1 durch einen Punkt vergr??ern. Die Idee der geeigneten . (etwa durch einen Punkt, eine Gerade, …) l??t sich stets anwenden, um (im allgemeinen echte) Untergruppen der Bewegungs- oder ?hnlichkeitsgruppe eines CK-Raumes zu finden.
59#
發(fā)表于 2025-3-31 20:37:23 | 只看該作者
Stereographische Projektion,1 ist der Standardschauplatz der projektiven Liniengeometrie die PLüCKER-Quadrik ., und nach 15A1,Def.1 ist der punktierte Kegel . der Standardschauplatz der (n-1)-dimensionalen LAGUERRE-Geometrien (vom Index q=1).
60#
發(fā)表于 2025-4-1 01:38:21 | 只看該作者
Inversion,. dadurch auszuzeichnen, da? man neben der Quadrik Q. einen festen Punkt . w?hlt und . setzt, falls die Verbindungsgerade P+0 existiert und P+0 ?Γ.. Man erh?lt auf diese Weise eine Abbildung aus dem P. in den P..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
精河县| 方城县| 吐鲁番市| 博兴县| 涟源市| 光泽县| 介休市| 竹溪县| 崇礼县| 安顺市| 新河县| 威远县| 内江市| 炎陵县| 方正县| 确山县| 六枝特区| 达日县| 临江市| 谢通门县| 昌乐县| 上虞市| 肃北| 富源县| 芜湖市| 宁城县| 长治市| 民乐县| 泰和县| 赞皇县| 乐昌市| 应用必备| 鄯善县| 南昌县| 高雄市| 南昌县| 浦北县| 安康市| 福州市| 南部县| 泽普县|