找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualisierung in Mathematik, Technik und Kunst; Grundlagen und Anwen Andreas Dress,Gottfried J?ger Book 1999 Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: 孵化
21#
發(fā)表于 2025-3-25 05:00:42 | 只看該作者
J?rg R. J. Schirra,Thomas Strothottevide students of mathematics with a set of accessible, hands-on experiences with fractals and their underlying mathematical principles and characteristics. Another is to show how fractals connect to many different aspects of mathematics and how the study of fractals can bring these ideas together. A
22#
發(fā)表于 2025-3-25 09:55:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:58:10 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:50 | 只看該作者
Herbert W. Frankely R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word ‘fractal‘ was coined by Benoit Mandelbrot in the late 1970s, but objects now defined as fractal in form have been known to artists and mathematicians for centuries. Mandelbrot‘s definition-"a set whose Hausdorff dimensi
25#
發(fā)表于 2025-3-25 21:55:10 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:32 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:51 | 只看該作者
Gabor Székelytial equations containing some material-dependent parameters. The relatively general validity of the formalism makes the study of fracture in this intermediate (or mesoscopic) range of length scales particularly attractive to statistical physicists. If the reader wants to know more about recent deve
28#
發(fā)表于 2025-3-26 10:38:35 | 只看該作者
29#
發(fā)表于 2025-3-26 16:30:09 | 只看該作者
Günter Pomaskao a multidimensional phase space. The trajectories within this phase space of the system converge to a subspace which is the geometrical attractor for the system. We infer from this that our deforming model rock can be described by a set of deterministic laws. The dimension of this attractor is abou
30#
發(fā)表于 2025-3-26 17:48:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 瑞安市| 卓资县| 琼结县| 徐州市| 察隅县| 洛川县| 米泉市| 棋牌| 张北县| 九寨沟县| 仁怀市| 邵东县| 永新县| 红桥区| 襄樊市| 铁岭市| 荥阳市| 含山县| 腾冲县| 如东县| 仪陇县| 扎赉特旗| 江北区| 阳泉市| 名山县| 丰镇市| 望都县| 顺昌县| 蒲江县| 万荣县| 镇江市| 绩溪县| 三明市| 林口县| 高邮市| 克什克腾旗| 衡阳县| 彰化县| 新竹市| 孟连|