找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vibrations of mechanical systems with regular structure; Ludmilla Banakh,Mark Kempner Book 2010 Springer-Verlag Berlin Heidelberg 2010 Rot

[復制鏈接]
樓主: 全體
41#
發(fā)表于 2025-3-28 15:39:39 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:13 | 只看該作者
Vibrations of Systems with Geometric Symmetry. Quasi-symmetrical Systemsgeometric symmetry find wide application in many areas of engineering. They form various kinds of machine platforms, cyclically repeated forms of stators, rotors with blades mounted on them, etc. Symmetric systems are widely applied also in the civil engineering where their use is convenient due to
43#
發(fā)表于 2025-3-28 23:54:59 | 只看該作者
44#
發(fā)表于 2025-3-29 05:20:22 | 只看該作者
Vibrations of Regular Ribbed Cylindrical Shells forces and the deformations of the middle surface of the shell proposed by V.V. Novozhilov and L.I. Balabukh [83] are used. The main advantage of these equations is that in them Betty’s law is observed very precisely and thus the dynamic stiffness matrix is symmetric, and therefore it is possible t
45#
發(fā)表于 2025-3-29 07:49:23 | 只看該作者
Book 2010 a geom- ric symmetry. Regular structures have for a long time been attracting the attention of scientists by the extraordinary beauty of their forms. They have been studied in many areas of science: chemistry, physics, biology, etc. Systems with geometric symmetry are used widely in many areas of e
46#
發(fā)表于 2025-3-29 13:12:21 | 只看該作者
1612-1384 Calculation.Seamless application of the mathematical apparatIn this book, regular structures are de ned as periodic structures consisting of repeated elements (translational symmetry) as well as structures with a geom- ric symmetry. Regular structures have for a long time been attracting the attenti
47#
發(fā)表于 2025-3-29 18:41:21 | 只看該作者
48#
發(fā)表于 2025-3-29 20:55:19 | 只看該作者
49#
發(fā)表于 2025-3-30 02:26:31 | 只看該作者
50#
發(fā)表于 2025-3-30 05:53:56 | 只看該作者
978-1-4419-1618-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Busines
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新郑市| 蓬溪县| 长沙市| 崇明县| 聊城市| 长宁区| 措勤县| 全州县| 义乌市| 天水市| 辽阳县| 大同县| 舞阳县| 尼勒克县| 旺苍县| 黔西| 穆棱市| 海南省| 青河县| 牡丹江市| 信宜市| 屏东市| 铁力市| 颍上县| 翁源县| 屏南县| 都江堰市| 克东县| 腾冲县| 乐亭县| 交城县| 太仓市| 延寿县| 临沭县| 通州市| 景东| 海兴县| 漾濞| 蕲春县| 汉沽区| 北辰区|