找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Vibrational-Rotational Excitations in Nonlinear Molecular Systems; A. A. Ovchinnikov,N. S. Erikhman,K. A. Pronin Book 2001 Springer Scienc

[復制鏈接]
樓主: 小故障
11#
發(fā)表于 2025-3-23 13:09:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:57 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:16 | 只看該作者
Coupled nonlinear oscillators: formation and decay of local modes,oincare map). These are intersections of two-dimensional tori (with the studied trajectories on them) with the three-dimensional manifold, which fixes one of the coordinates of the system (for example, .1 = 0 and .1 > 0). In the 4-dimensional phase space the Poincare map is a one-dimensional manifol
14#
發(fā)表于 2025-3-23 23:16:10 | 只看該作者
15#
發(fā)表于 2025-3-24 03:20:17 | 只看該作者
,Quantum Hamiltonians of vibrational — rotational excitations in polyatomic molecules; method of conm. In Sections 6.1 and 6.2 this technique will be used to write down the full vibrational-rotational Hamiltonian of the molecule. Sections 6.3 and 6.4 are devoted to the method of contact transformations, which enables one to represent the Hamiltonian of a molecule in the form of power series in the
16#
發(fā)表于 2025-3-24 10:21:33 | 只看該作者
Book 2001ser and the subsequent development of nonlinear optics. The latter describes the in- teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastroph
17#
發(fā)表于 2025-3-24 14:09:32 | 只看該作者
18#
發(fā)表于 2025-3-24 15:58:46 | 只看該作者
Vibrational-Rotational Excitations in Nonlinear Molecular Systems
19#
發(fā)表于 2025-3-24 19:53:17 | 只看該作者
Vibrational-Rotational Excitations in Nonlinear Molecular Systems978-1-4615-1317-9
20#
發(fā)表于 2025-3-24 23:19:19 | 只看該作者
978-1-4613-5494-9Springer Science+Business Media New York 2001
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 20:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凤冈县| 商河县| 龙陵县| 嫩江县| 景谷| 肥西县| 泉州市| 平顶山市| 阿克陶县| 嘉荫县| 怀安县| 鄂温| 夹江县| 崇义县| 临潭县| 通许县| 图木舒克市| 齐齐哈尔市| 府谷县| 永康市| 独山县| 宜春市| 叙永县| 磴口县| 神农架林区| 阜新| 肥东县| 红安县| 临潭县| 永平县| 含山县| 西安市| 郯城县| 许昌市| 安宁市| 平乡县| 连州市| 宜宾县| 故城县| 徐闻县| 会理县|