找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Problems in Riemannian Geometry; Bubbles, Scans and G Paul Baird,Ali Fardoun,Ahmad Soufi Conference proceedings 2004 Springer B

[復(fù)制鏈接]
樓主: 倒鉤
31#
發(fā)表于 2025-3-26 22:15:27 | 只看該作者
32#
發(fā)表于 2025-3-27 03:12:34 | 只看該作者
33#
發(fā)表于 2025-3-27 08:05:38 | 只看該作者
Evolution by Curvature of Networks of Curves in the Planehese networks of curves is the simplest example of curvature flow for sets which are “essentially” non regular..In this paper, we introduce the problem and we present some results and open problems about existence, uniqueness and, in particular, the global regularity of the flow.
34#
發(fā)表于 2025-3-27 10:44:42 | 只看該作者
35#
發(fā)表于 2025-3-27 15:52:29 | 只看該作者
Application of Scans and Fractional Power Integrandsere first introduced in the work [HR1] of Tristan Rivière and the second author to adequately describe certain bubbling phenomena. There, the behaviour of certain .. weakly convergent sequences of smooth maps from four-dimensional domains into .. led to the consideration of a necessarily infinite ma
36#
發(fā)表于 2025-3-27 18:06:35 | 只看該作者
Bubbling of Almost-harmonic Maps between 2-spheres at Points of Zero Energy Densitythe domain at which the energy density of the body map is zero. We also see that this translates into different behaviour for the harmonic map flow. In [11] we obtained results, assuming nonzero bubble point density for certain bubbles, forcing the harmonic map flow to converge uniformly and exponen
37#
發(fā)表于 2025-3-27 22:27:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:16:51 | 只看該作者
39#
發(fā)表于 2025-3-28 06:33:18 | 只看該作者
40#
發(fā)表于 2025-3-28 12:34:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安陆市| 青河县| 马关县| 大悟县| 高台县| 安国市| 平遥县| 陇川县| 鹤壁市| 彩票| 涟源市| 沈阳市| 呼图壁县| 广西| 安乡县| 报价| 耒阳市| 元氏县| 三台县| 内丘县| 普宁市| 黎城县| 武冈市| 女性| 牙克石市| 绵竹市| 沁源县| 连江县| 江油市| 平利县| 德惠市| 衡阳县| 文昌市| 甘德县| 张北县| 永和县| 大连市| 龙江县| 阿拉善盟| 平和县| 青阳县|