找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods for Free Surface Interfaces; Proceedings of a Con Paul Concus,Robert Finn Conference proceedings 1987 Springer-Verlag N

[復(fù)制鏈接]
樓主: Harding
51#
發(fā)表于 2025-3-30 10:42:54 | 只看該作者
,Boundary Behavior of Nonparametric Minimal Surfaces—Some Theorems and Conjectures,ept possibly at (0,0), where it might have a jump discontinuity. Then for all directions from (0,0) into ., the radial limits of . exist, where . is the solution of the minimal surface equation in . or of an equation of prescribed (bounded) mean curvature in . with . and .. Some conjectures which would generalize this result are mentioned.
52#
發(fā)表于 2025-3-30 15:10:20 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:36 | 只看該作者
54#
發(fā)表于 2025-3-30 21:33:19 | 只看該作者
55#
發(fā)表于 2025-3-31 02:31:52 | 只看該作者
56#
發(fā)表于 2025-3-31 07:26:40 | 只看該作者
On the Existence of Embedded Minimal Surfaces of Higher Genus with Free Boundaries in Riemannian MaIn this chapter we consider the following configuration: a Riemannian manifold . of bounded geometry, some closed Jordan curves Γ., and a supporting surface ?., disjoint from the Γ.. We further assume that the Γ. are contained in a suitable barrier ?. of nonnegative mean curvature (cf. §2 for details).
57#
發(fā)表于 2025-3-31 10:50:29 | 只看該作者
58#
發(fā)表于 2025-3-31 13:42:48 | 只看該作者
A Mathematical Description of Equilibrium Surfaces,The central point in many problems of mathematical physics is answering questions about the boundary of a region, using as little information as possible about the region itself.
59#
發(fā)表于 2025-3-31 20:23:42 | 只看該作者
60#
發(fā)表于 2025-4-1 00:29:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康乐县| 余干县| 唐海县| 锦州市| 横山县| 鲜城| 宣武区| 宽甸| 昌都县| 长葛市| 兰考县| 偏关县| 南平市| 武强县| 康定县| 铁岭市| 通海县| 阿尔山市| 永清县| 西华县| 页游| 霍林郭勒市| 榆社县| 乐都县| 姚安县| 常山县| 南宁市| 临夏县| 玉山县| 获嘉县| 汶川县| 阿克苏市| 内江市| 凤翔县| 晋江市| 梁河县| 曲周县| 塔城市| 保德县| 满洲里市| 浪卡子县|