找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variational Methods for Free Surface Interfaces; Proceedings of a Con Paul Concus,Robert Finn Conference proceedings 1987 Springer-Verlag N

[復(fù)制鏈接]
樓主: Harding
51#
發(fā)表于 2025-3-30 10:42:54 | 只看該作者
,Boundary Behavior of Nonparametric Minimal Surfaces—Some Theorems and Conjectures,ept possibly at (0,0), where it might have a jump discontinuity. Then for all directions from (0,0) into ., the radial limits of . exist, where . is the solution of the minimal surface equation in . or of an equation of prescribed (bounded) mean curvature in . with . and .. Some conjectures which would generalize this result are mentioned.
52#
發(fā)表于 2025-3-30 15:10:20 | 只看該作者
53#
發(fā)表于 2025-3-30 20:12:36 | 只看該作者
54#
發(fā)表于 2025-3-30 21:33:19 | 只看該作者
55#
發(fā)表于 2025-3-31 02:31:52 | 只看該作者
56#
發(fā)表于 2025-3-31 07:26:40 | 只看該作者
On the Existence of Embedded Minimal Surfaces of Higher Genus with Free Boundaries in Riemannian MaIn this chapter we consider the following configuration: a Riemannian manifold . of bounded geometry, some closed Jordan curves Γ., and a supporting surface ?., disjoint from the Γ.. We further assume that the Γ. are contained in a suitable barrier ?. of nonnegative mean curvature (cf. §2 for details).
57#
發(fā)表于 2025-3-31 10:50:29 | 只看該作者
58#
發(fā)表于 2025-3-31 13:42:48 | 只看該作者
A Mathematical Description of Equilibrium Surfaces,The central point in many problems of mathematical physics is answering questions about the boundary of a region, using as little information as possible about the region itself.
59#
發(fā)表于 2025-3-31 20:23:42 | 只看該作者
60#
發(fā)表于 2025-4-1 00:29:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦南县| 宽城| 永嘉县| 安化县| 天全县| 吉隆县| 海丰县| 盐山县| 宁津县| 临洮县| 阿克| 汝南县| 青龙| 顺平县| 陆川县| 微博| 乳山市| 离岛区| 遂昌县| 张掖市| 济阳县| 崇州市| 屯门区| 台东市| 通榆县| 剑川县| 定西市| 湟源县| 工布江达县| 亚东县| 刚察县| 金堂县| 南康市| 乐至县| 枣庄市| 固阳县| 崇仁县| 揭西县| 商河县| 香港 | 大埔区|