找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variable Neighborhood Search; 7th International Co Rachid Benmansour,Angelo Sifaleras,Nenad Mladenovi Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: graphic
31#
發(fā)表于 2025-3-27 00:12:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:10:50 | 只看該作者
Local Search Approach for the (,|,)-Centroid Problem Under , Metric,he Leader’s facilities maximizing her market share. We provide the results on the computational complexity of this problem and develop a local search heuristic, based on the VNS framework. Computational experiments on the randomly generated test instances show that the proposed approach performs well.
33#
發(fā)表于 2025-3-27 06:03:54 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:12 | 只看該作者
A Reduced Variable Neighborhood Search Approach for Feature Selection in Cancer Classification,Elimination (RFE) heuristic with a RVNS algorithm. Despite the large size of the problem instances, the suggested feature selection scheme converges within reasonably short time, when compared to similar methods. Results indicate high performance for RVNS that, is further improved when the RFE method is applied as a pre-processing step.
35#
發(fā)表于 2025-3-27 17:03:06 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:31 | 只看該作者
37#
發(fā)表于 2025-3-28 02:01:19 | 只看該作者
A Variable Neighborhood Search Algorithmic Approach for Estimating MDHMM Parameters and Application hybrid model in which VNS algorithm is coupled with Baum-Welch algorithm for parameter estimation of MDHMM, is applied in credit scoring domain, using real peer-to-peer lending data. The experiments results show the performance efficiency of our model in comparison with classical and alternative machine learning models for credit scoring.
38#
發(fā)表于 2025-3-28 04:52:39 | 只看該作者
Daily Scheduling and Routing of Home Health Care with Multiple Availability Periods of Patients,ed using CPLEX IBM. To deal with large instances a general variable neighborhood search (GVNS) based heuristic is proposed, implemented and tested using the language C++. Computational results show that the proposed heuristic could find a good solution in a very short computational time.
39#
發(fā)表于 2025-3-28 07:00:12 | 只看該作者
Optimization of Maintenance Planning and Routing Problems, Neighborhood Search that uses sequentially different neighborhood structures. The performance of our algorithms is evaluated using new generated instances. Results provide strong evidence of the effectiveness of our heuristic approach.
40#
發(fā)表于 2025-3-28 13:09:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福鼎市| 新宾| 西充县| 麟游县| 灌阳县| 鸡泽县| 遂溪县| 新野县| 休宁县| 任丘市| 甘谷县| 璧山县| 东宁县| 永昌县| 宁强县| 长宁区| 伊通| 土默特右旗| 筠连县| 抚松县| 轮台县| 马鞍山市| 绥滨县| 平果县| 若羌县| 承德县| 济宁市| 五家渠市| 洪江市| 乐业县| 黄平县| 吴忠市| 佳木斯市| 沾益县| 蒙自县| 永昌县| 山丹县| 嘉峪关市| 建始县| 昭平县| 民县|