找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variable Neighborhood Search; 7th International Co Rachid Benmansour,Angelo Sifaleras,Nenad Mladenovi Conference proceedings 2020 Springer

[復制鏈接]
樓主: graphic
31#
發(fā)表于 2025-3-27 00:12:00 | 只看該作者
32#
發(fā)表于 2025-3-27 01:10:50 | 只看該作者
Local Search Approach for the (,|,)-Centroid Problem Under , Metric,he Leader’s facilities maximizing her market share. We provide the results on the computational complexity of this problem and develop a local search heuristic, based on the VNS framework. Computational experiments on the randomly generated test instances show that the proposed approach performs well.
33#
發(fā)表于 2025-3-27 06:03:54 | 只看該作者
34#
發(fā)表于 2025-3-27 11:55:12 | 只看該作者
A Reduced Variable Neighborhood Search Approach for Feature Selection in Cancer Classification,Elimination (RFE) heuristic with a RVNS algorithm. Despite the large size of the problem instances, the suggested feature selection scheme converges within reasonably short time, when compared to similar methods. Results indicate high performance for RVNS that, is further improved when the RFE method is applied as a pre-processing step.
35#
發(fā)表于 2025-3-27 17:03:06 | 只看該作者
36#
發(fā)表于 2025-3-27 21:26:31 | 只看該作者
37#
發(fā)表于 2025-3-28 02:01:19 | 只看該作者
A Variable Neighborhood Search Algorithmic Approach for Estimating MDHMM Parameters and Application hybrid model in which VNS algorithm is coupled with Baum-Welch algorithm for parameter estimation of MDHMM, is applied in credit scoring domain, using real peer-to-peer lending data. The experiments results show the performance efficiency of our model in comparison with classical and alternative machine learning models for credit scoring.
38#
發(fā)表于 2025-3-28 04:52:39 | 只看該作者
Daily Scheduling and Routing of Home Health Care with Multiple Availability Periods of Patients,ed using CPLEX IBM. To deal with large instances a general variable neighborhood search (GVNS) based heuristic is proposed, implemented and tested using the language C++. Computational results show that the proposed heuristic could find a good solution in a very short computational time.
39#
發(fā)表于 2025-3-28 07:00:12 | 只看該作者
Optimization of Maintenance Planning and Routing Problems, Neighborhood Search that uses sequentially different neighborhood structures. The performance of our algorithms is evaluated using new generated instances. Results provide strong evidence of the effectiveness of our heuristic approach.
40#
發(fā)表于 2025-3-28 13:09:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
温州市| 泉州市| 海盐县| 伊川县| 金坛市| 平泉县| 延津县| 米泉市| 南岸区| 晋城| 包头市| 且末县| 邵武市| 三都| 宁德市| 麻栗坡县| 郑州市| 轮台县| 陵川县| 银川市| 怀宁县| 辽宁省| 乡宁县| 阳江市| 巫溪县| 高要市| 长乐市| 大埔区| 建阳市| 南京市| 平安县| 巢湖市| 广宗县| 四子王旗| 普兰店市| 玛沁县| 金坛市| 泰和县| 秀山| 霍邱县| 自治县|