找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Variable Lebesgue Spaces and Hyperbolic Systems; David Cruz-Uribe,Alberto Fiorenza,Jens Wirth,Serge Textbook 2014 Springer Basel 2014 Rubi

[復(fù)制鏈接]
樓主: affront
31#
發(fā)表于 2025-3-26 22:18:49 | 只看該作者
Related topicsons. This is natural and has a long history in the study of hyperbolic equations and coupled systems. For diagonalisation schemes in broader sense and their application we also refer to [21]. Some more applications are discussed there too.
32#
發(fā)表于 2025-3-27 02:57:42 | 只看該作者
Advanced Courses in Mathematics - CRM Barcelonahttp://image.papertrans.cn/v/image/980506.jpg
33#
發(fā)表于 2025-3-27 08:15:52 | 只看該作者
https://doi.org/10.1007/978-3-0348-0840-8Rubio de Francia extrapolation; hyperbolic Cauchy problems; maximal operators; oscillating time-depende
34#
發(fā)表于 2025-3-27 12:27:06 | 只看該作者
35#
發(fā)表于 2025-3-27 15:52:12 | 只看該作者
36#
發(fā)表于 2025-3-27 19:15:01 | 只看該作者
37#
發(fā)表于 2025-3-27 22:07:56 | 只看該作者
Effective lower order perturbationsIf lower order terms are too large to be controlled, it becomes important to investigate the behaviour of solutions for bounded frequencies. We will restrict ourselves to situations where an asymptotic construction for . 0 becomes important and provide some essential estimates for this.
38#
發(fā)表于 2025-3-28 02:57:30 | 只看該作者
Examples and counter-examplesBoth in Chapters 4 and 5 we made symbol like assumptions on coefficients, e.g., we considered hyperbolic systems . with coefficient matrices ., meaning that derivatives of the coefficients are controlled by
39#
發(fā)表于 2025-3-28 06:36:05 | 只看該作者
40#
發(fā)表于 2025-3-28 11:00:54 | 只看該作者
scussed in mathematical or social science literature. With emphasis on the chaotic dynamics that may ensue, the book describes the evolution on the basis of temporal and locational advantages. It explains nonlinear discrete time dynamic maps primarily through numerical simulations. These very rich q
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪| 寿宁县| 恩施市| 穆棱市| 镇宁| 蒙山县| 宝兴县| 新蔡县| 依兰县| 黔南| 普格县| 慈利县| 铁岭市| 思南县| 泰兴市| 吴桥县| 澄城县| 霍邱县| 平利县| 遂昌县| 田林县| 肇州县| 南充市| 墨玉县| 佳木斯市| 浪卡子县| 永年县| 宣城市| 平武县| 泸州市| 龙口市| 淮滨县| 微山县| 栖霞市| 霍林郭勒市| 馆陶县| 乌兰县| 桐梓县| 资溪县| 南昌市| 水城县|