找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Value Functions on Simple Algebras, and Associated Graded Rings; Jean-Pierre Tignol,Adrian R. Wadsworth Book 2015 Springer International P

[復制鏈接]
樓主: 調停
31#
發(fā)表于 2025-3-26 21:16:27 | 只看該作者
Jean-Pierre Tignol,Adrian R. Wadsworth provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.978-90-277-2561-5978-94-009-6292-7Series ISSN 0168-1222 Series E-ISSN 2365-6425
32#
發(fā)表于 2025-3-27 03:07:14 | 只看該作者
33#
發(fā)表于 2025-3-27 07:56:18 | 只看該作者
34#
發(fā)表于 2025-3-27 13:06:41 | 只看該作者
35#
發(fā)表于 2025-3-27 15:05:13 | 只看該作者
Jean-Pierre Tignol,Adrian R. Wadsworthlently, . . and . . belong to the . in complex spacetime, respectively. The space coordinates of . . and . . give the spatial orientations and radii of the dishes, while their time coordinates determine the . of the emission and reception processes. The .(y) of the communication process is a convex
36#
發(fā)表于 2025-3-27 21:01:53 | 只看該作者
Jean-Pierre Tignol,Adrian R. Wadsworthetric, bilinear form . such that .(x, x) = .(x). The choice of . fixes the contraction .?. in ?. and permits the introduction of a Clifford product x. = x?. x?. of x ∈ . and . ∈ ? .. This gives rise to the Clifford algebra of the symmetric bilinear form 1/2(.(x,y)+.(y,x)) when the characteristic ≠ 2
37#
發(fā)表于 2025-3-28 00:43:13 | 只看該作者
Jean-Pierre Tignol,Adrian R. Wadsworthy vulnerable to climate change impacts; it is affecting us all, but the impacts are uneven (Field et al. 2014), requiring different kinds of transformative learning processes in different places and contexts. In this chapter, we therefore propose that, under climate change conditions, we view learni
38#
發(fā)表于 2025-3-28 03:40:26 | 只看該作者
Value Functions on Simple Algebras, and Associated Graded Rings
39#
發(fā)表于 2025-3-28 06:24:47 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/v/image/980350.jpg
40#
發(fā)表于 2025-3-28 11:25:58 | 只看該作者
https://doi.org/10.1007/978-3-319-16360-4Associated Graded Algebra; Brauer Group; Division Algebra; Ramification; Valuation
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 09:34
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
成安县| 沁源县| 长子县| 鲁山县| 皋兰县| 军事| 乌兰县| 察隅县| 自贡市| 琼中| 金堂县| 高密市| 安陆市| 达拉特旗| 行唐县| 平罗县| 梅州市| 乌苏市| 太康县| 那坡县| 桃园县| 建始县| 哈密市| 太仆寺旗| 云林县| 交口县| 乐业县| 中西区| 丹阳市| 喀什市| 固阳县| 大安市| 岑溪市| 香格里拉县| 巩义市| 湘潭市| 通山县| 平度市| 彭州市| 岑溪市| 阳新县|