找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Value Distribution Theory and Related Topics; G. Barsegian,I. Laine,C. C. Yang Book 2004 Springer Science+Business Media New York 2004 Com

[復(fù)制鏈接]
樓主: iniquity
31#
發(fā)表于 2025-3-26 21:40:38 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:30 | 只看該作者
A New Trend in Complex Differential Equations: Quasimeromorphic Solutionsns for generalized algebraic differential equations of the first order. In particular, the classical Goldberg result that any meromorphic solution of a first order algebraic differential equation must be of finite order will been extended here to .-. solutions of first order generalized algebraic differential equations.
33#
發(fā)表于 2025-3-27 07:46:42 | 只看該作者
Recent Topics in Uniqueness Problem for Meromorphic Mappingsications to constructing problem of hyperbolic hypersurfaces in complex projective spaces. Furthermore, we give a review on some recent researches on unique range set for meromorphic functions of one complex variable.
34#
發(fā)表于 2025-3-27 09:59:58 | 只看該作者
35#
發(fā)表于 2025-3-27 14:16:24 | 只看該作者
36#
發(fā)表于 2025-3-27 19:43:58 | 只看該作者
https://doi.org/10.1007/b131070Complex analysis; Meromorphic function; Nevanlinna theory; calculus; differential equation; functional eq
37#
發(fā)表于 2025-3-28 01:58:52 | 只看該作者
978-1-4757-8018-5Springer Science+Business Media New York 2004
38#
發(fā)表于 2025-3-28 04:26:29 | 只看該作者
On Level Sets of Quasiconformal MappingsIn the present article some analogs and generalizations of the tangent variation principle are given for quasiconformal and continuously differentiable mappings.
39#
發(fā)表于 2025-3-28 09:58:01 | 只看該作者
40#
發(fā)表于 2025-3-28 12:31:14 | 只看該作者
On the Functional Equation We prove that for a generic pair (.) of polynomials . of degree . and . of degree ., where . are satisfying some conditions, . for meromorphic functions . implies ., .. We also give another proof of the statement saying that a generic polynomial of degree at least 5 is a uniqueness polynomial for meromorphic functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新泰市| 军事| 加查县| 武城县| 澄迈县| 拉萨市| 桐城市| 辽源市| 阜新市| 奇台县| 岳阳市| 绵阳市| 隆林| 鸡泽县| 大田县| 昌吉市| 庐江县| 菏泽市| 黄平县| 万源市| 麻江县| 司法| 南涧| 若羌县| 正安县| 理塘县| 南江县| 吉首市| 永新县| 汤原县| 左云县| 闻喜县| 永福县| 深圳市| 高平市| 武隆县| 南靖县| 翁牛特旗| 集安市| 富民县| 铜山县|