找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Validation Numerics; Theory and Applicati R. Albrecht,G. Alefeld,H. J. Stetter Book 1993 Springer-Verlag/Wien 1993 Fortran.Matrix.algorithm

[復(fù)制鏈接]
樓主: Halcyon
11#
發(fā)表于 2025-3-23 12:41:26 | 只看該作者
12#
發(fā)表于 2025-3-23 17:07:58 | 只看該作者
13#
發(fā)表于 2025-3-23 20:22:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:21:26 | 只看該作者
15#
發(fā)表于 2025-3-24 03:53:49 | 只看該作者
16#
發(fā)表于 2025-3-24 10:03:12 | 只看該作者
A Verified Computation of Fourier-Representations of Solutions for Functional Equations,such so-called . the spectrum of a function can be included with arbitrary accuracy. This calculus can be used for example to solve periodical differential and integral equations. An example shows the computed inclusion of the spectrum of a solution.
17#
發(fā)表于 2025-3-24 11:49:49 | 只看該作者
The Cluster Problem in Global Optimization: the Univariate Case,nds obtained with interval arithmetic, along with the “midpoint test,” but no acceleration procedures. Unless the lower bound is exact, the algorithm without acceleration procedures in general gives an undesirable Cluster of intervals around each minimizer. In this article, we analyze this problem i
18#
發(fā)表于 2025-3-24 15:37:30 | 只看該作者
Developing Expert Systems for Validating Numerics,there are more than one mathematically equivalent self-validating methods with completely different behavior on a Computer. Therefore only a quantitative valuation of the available software modules rather than qualitative can lead to a satisfactory result. First the design of a shell suitable for th
19#
發(fā)表于 2025-3-24 19:46:31 | 只看該作者
,Computation of Interval Bounds for Weierstrass’ Elliptic Function ?(,),s of the characteristic polynomial (arbitrary period lattices) is presented. The function is approximated by its truncated Laurent series at zero. An error bound is derived for the remainder term. If necessary, the periodicity of ?, the homogeneity relations and the addition formulas are used to per
20#
發(fā)表于 2025-3-25 02:40:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇平县| 和顺县| 微山县| 溆浦县| 屯门区| 梓潼县| 麟游县| 上虞市| 共和县| 宁波市| 武宣县| 楚雄市| 体育| 常熟市| 驻马店市| 来凤县| 德令哈市| 甘肃省| 海安县| 德兴市| 辽阳县| 彭州市| 克东县| 泸水县| 嘉荫县| 会同县| 宝鸡市| 于田县| 东乌珠穆沁旗| 军事| 舒兰市| 邹城市| 新疆| 阳高县| 任丘市| 怀来县| 正镶白旗| 那曲县| 江达县| 纳雍县| 尉犁县|