找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: User Modeling, Adaptation and Personalization; 22nd International C Vania Dimitrova,Tsvi Kuflik,Geert-Jan Houben Conference proceedings 201

[復(fù)制鏈接]
樓主: advocate
21#
發(fā)表于 2025-3-25 05:07:19 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:34 | 只看該作者
Predicting User Locations and Trajectoriesto a large extent routine behavior and visits to already visited locations. In this paper, we show how daily and weekly routines can be modeled with basic prediction techniques. We compare the methods based on their performance, entropy and correlation measures. Further, we discuss how location pred
23#
發(fā)表于 2025-3-25 12:19:43 | 只看該作者
A Two-Stage Item Recommendation Method Using Probabilistic Ranking with Reconstructed Tensor Modelns. Recently, few researchers have used tensor models in recommendation to represent and analyze latent relationships inherent in multi-dimensions data. A common approach is to build the tensor model, decompose it and, then, directly use the reconstructed tensor to generate the recommendation based
24#
發(fā)表于 2025-3-25 16:32:02 | 只看該作者
Time-Sensitive User Profile for Optimizing Search Personlizationeds and interests. To achieve this goal, many personalized search approaches explore user’s social Web interactions to extract his preferences and interests, and use them to model his profile. In our approach, the user profile is implicitly represented as a vector of weighted terms which correspond
25#
發(fā)表于 2025-3-25 21:50:11 | 只看該作者
26#
發(fā)表于 2025-3-26 01:39:55 | 只看該作者
27#
發(fā)表于 2025-3-26 04:46:53 | 只看該作者
Hoeffding-CF: Neighbourhood-Based Recommendations on Reliably Similar Usersown that decisions made on a naive computation of user similarity are unreliable, because the number of co-ratings varies strongly among users. In this paper, we formalize the notion of . between two users and propose a method that constructs a user’s neighbourhood by selecting only those users that
28#
發(fā)表于 2025-3-26 12:16:51 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:29 | 只看該作者
Adaptive Support versus Alternating Worked Examples and Tutored Problems: Which Leads to Better Learound that learning from examples results in faster learning in comparison to tutored problem solving in Intelligent Tutoring Systems. We present a study that compares a fixed sequence of alternating worked examples and tutored problem solving with a strategy that adaptively decides how much assistan
30#
發(fā)表于 2025-3-26 17:39:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 06:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 大宁县| 玛曲县| 望都县| 万安县| 孟连| 广昌县| 阳曲县| 伊春市| 雅江县| 旅游| 巫山县| 库伦旗| 景德镇市| 库车县| 通辽市| 武义县| 江陵县| 盐津县| 宜良县| 库尔勒市| 崇义县| 前郭尔| 吉林市| 达日县| 吴川市| 张家界市| 临潭县| 博湖县| 湘潭县| 夹江县| 西城区| 兰西县| 甘谷县| 晋江市| 广德县| 石阡县| 嘉禾县| 清水县| 兴化市| 秦安县|