找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: User Modeling, Adaptation and Personalization; 23rd International C Francesco Ricci,Kalina Bontcheva,Séamus Lawless Conference proceedings

[復(fù)制鏈接]
樓主: concession
21#
發(fā)表于 2025-3-25 07:07:59 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:25 | 只看該作者
Counteracting Anchoring Effects in Group Decision Making decision bias in the context of group decision scenarios. On the basis of the results of a user study in the domain of software requirements prioritization we discuss results regarding the optimal time when preference information of other users should be disclosed to the current user. Furthermore,
23#
發(fā)表于 2025-3-25 13:56:53 | 只看該作者
Gifting as a Novel Mechanism for Personalized Museum and Gallery Interpretationet the diverse needs of individual visitors. However, increased personalization can mean that the sociality of museum visits is overlooked. We present a new approach to resolving the tension between the personal and the social that invites visitors themselves to personalize and gift interpretations
24#
發(fā)表于 2025-3-25 17:00:52 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:32 | 只看該作者
26#
發(fā)表于 2025-3-26 03:19:29 | 只看該作者
Towards a Recommender Engine for Personalized Visualizationsy people understand them. However, creating them requires specific expertise of the domain and underlying data to determine the right representation. Although there are rules that help generate them, the results are too broad to account for varying user preferences. To tackle this issue, we propose
27#
發(fā)表于 2025-3-26 04:36:27 | 只看該作者
28#
發(fā)表于 2025-3-26 09:36:26 | 只看該作者
29#
發(fā)表于 2025-3-26 13:28:27 | 只看該作者
Where to Next? A Comparison of Recommendation Strategies for Navigating a Learning Object Repository houses over 1250 educational resources. The proposed approaches stem from three basic strategies: recommendations based on resource metadata, user behavior, and alignment to academic standards. An evaluation from subject experts suggests that usage-based recommendations are best aligned with teache
30#
發(fā)表于 2025-3-26 20:12:58 | 只看該作者
Diagrammatic Student Models: Modeling Student Drawing Performance with Deep Learningnts’ learning and increase their engagement, developing student models to dynamically support drawing holds significant promise. To this end, we introduce ., which reason about students’ drawing trajectories to generate a series of predictions about their conceptual knowledge based on their evolving
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 05:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣汉县| 金乡县| 凤凰县| 新疆| 华亭县| 太和县| 忻城县| 余庆县| 客服| 岳池县| 凌海市| 台南县| 冕宁县| 海伦市| 隆子县| 乌拉特中旗| 沭阳县| 东城区| 高碑店市| 思茅市| 辽阳市| 开远市| 和田市| 莱州市| 梨树县| 平武县| 喜德县| 环江| 武夷山市| 肃宁县| 托克托县| 盐边县| 石泉县| 图木舒克市| 威信县| 富川| 九龙坡区| 渭南市| 青神县| 巴南区| 栖霞市|