找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universit?re Bildungskooperationen; Gestaltungsvarianten Svenja Hagenhoff Book 2002 Deutscher Universit?ts-Verlag GmbH, Wiesbaden 2002 Bild

[復制鏈接]
樓主: IU421
21#
發(fā)表于 2025-3-25 03:32:50 | 只看該作者
22#
發(fā)表于 2025-3-25 11:09:31 | 只看該作者
Svenja Hagenhofft just stated and illustrated by examples and corollaries. In this way, the reader is guided rather quickly from the basic theory to current research questions,978-3-540-20665-1978-3-642-18868-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
23#
發(fā)表于 2025-3-25 14:37:03 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:50 | 只看該作者
Svenja Hagenhoffess of the boundary layer in the computational space nearly constant. In two-dimensional laminar boundary-layer predictions similarity-type, such as Blasius or Levy-Lees, transformations generally achieve the desired goal. In turbulent boundary layers the advantage of such transformations is not ent
25#
發(fā)表于 2025-3-25 22:24:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:30:58 | 只看該作者
27#
發(fā)表于 2025-3-26 04:42:31 | 只看該作者
Svenja Hagenhoffsurface as a part of high-frequency acoustic experiments. Relatively undisturbed cores up to 50 cm long were collected by divers from medium sand, fine sand, and mud. Values of permeability, porosity, and grain size in addition to compressional and shear wave velocities were determined in the labora
28#
發(fā)表于 2025-3-26 09:08:38 | 只看該作者
Svenja Hagenhoffometrical idea due to R. Thom and H. Whitney. These sheaves, generalizing the local systems that are so ubiquitous in mathematics, have powerful applications to the topology of such singular spaces (mainly algebraic and analytic complex varieties)...This introduction to the subject can be regarded a
29#
發(fā)表于 2025-3-26 16:02:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 06:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
舞钢市| 石景山区| 阿尔山市| 抚松县| 武冈市| 邹城市| 红河县| 石景山区| 屏边| 司法| 乃东县| 莱西市| 太和县| 华容县| 响水县| 会宁县| 尉氏县| 达尔| 雷波县| 珲春市| 拜城县| 洪雅县| 清水河县| 汉中市| 五大连池市| 上思县| 汉沽区| 曲沃县| 长顺县| 尚义县| 伊通| 积石山| 电白县| 拉萨市| 阳城县| 揭西县| 碌曲县| 浦东新区| 池州市| 伊春市| 蕲春县|