找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universal Fuzzy Controllers for Non-affine Nonlinear Systems; Qing Gao Book 2017 Springer Science+Business Media Singapore 2017 T-S Fuzzy

[復制鏈接]
樓主: 適婚女孩
21#
發(fā)表于 2025-3-25 03:23:28 | 只看該作者
2190-5053 tematic and integral answer to the universal fuzzy controlle.This thesis?provides?a systematic and integral answer to an open problem concerning the universality of dynamic fuzzy controllers.?It presents a number of?novel ideas and?approaches to various issues including universal function approximat
22#
發(fā)表于 2025-3-25 08:18:51 | 只看該作者
23#
發(fā)表于 2025-3-25 15:11:00 | 只看該作者
Universal Fuzzy Models and Universal Fuzzy Controllers for Stochastic Non-affine Nonlinear Systemsng mechanism of stochastic fuzzy logic is first discussed and a stochastic generalized fuzzy model with new stochastic fuzzy rule base is then given. Based on their function approximation capability, this kind of stochastic generalized fuzzy models are shown to be universal fuzzy models for stochast
24#
發(fā)表于 2025-3-25 16:28:04 | 只看該作者
Sliding Mode Control Based on T–S Fuzzy Modelsopose a novel dynamic sliding mode control (DSMC) scheme for T–S fuzzy models, aiming to eliminate the restrictive assumption that all subsystems share a common input matrix, which is required in most existing fuzzy SMC approaches. Sufficient conditions for the reachability of the sliding surface an
25#
發(fā)表于 2025-3-25 20:00:22 | 只看該作者
26#
發(fā)表于 2025-3-26 02:57:00 | 只看該作者
Universal Fuzzy Integral Sliding-Mode Controllers for Stochastic Non-affine Nonlinear Systemsal equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T–S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very res
27#
發(fā)表于 2025-3-26 07:58:50 | 只看該作者
Book 2017er of?novel ideas and?approaches to various issues including universal function approximation, universal fuzzy models, universal fuzzy stabilization controllers, and universal fuzzy integral sliding mode controllers. The proposed control design criteria can be conveniently verified?using the?MATLAB
28#
發(fā)表于 2025-3-26 10:37:45 | 只看該作者
Sliding Mode Control Based on T–S Fuzzy Modelsd asymptotic stability of the sliding motion are formulated in the form of linear matrix inequalities. Finally, simulation results illustrating the advantages and effectiveness of the proposed approaches are provided.
29#
發(fā)表于 2025-3-26 13:09:47 | 只看該作者
Universal Fuzzy Models and Universal Fuzzy Controllers for Non-affine Nonlinear Systemshe universality of the fuzzy control approach in the context of two classes of nonlinear systems, and we provide constructive procedures to obtain the universal fuzzy controllers. An example is finally presented to show the effectiveness of our approach.
30#
發(fā)表于 2025-3-26 18:16:33 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 05:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁乡县| 伊吾县| 临沂市| 惠来县| 丽江市| 兰西县| 穆棱市| 深水埗区| 中西区| 甘洛县| 浙江省| 肇源县| 高雄市| 界首市| 波密县| 固镇县| 汉阴县| 新民市| 神木县| 辽源市| 社旗县| 札达县| 平定县| 泰兴市| 竹溪县| 镇宁| 军事| 大港区| 淄博市| 博罗县| 榕江县| 新源县| 寿阳县| 汾阳市| 包头市| 陈巴尔虎旗| 双牌县| 永登县| 个旧市| 东乡族自治县| 枣阳市|